APPENDIX – AM

MADURAI KAMARAJ UNIVERSITY

(University with Potential for excellence)

B.SC., PHYSICS (SEMESTER) CHOICE BASED CREDIT SYSTEM REGULATIONS AND SYLLABUS

(This will come into effect from the academic year 2023 onwards)

1.INTRODUCTION OF THE PROGRAMME:

Physics is often considered to be the most fundamental science. It is the basis of all other science subjects. It explains natural phenomena in the Universe. A bachelor degree in Physics is a great foundation for career in government jobs, industries, educational institutions, labs etc., Physics brings a broad perspective to any problem. This intensive thinking makes the Physicist desirable in any field. That's why Physics graduates can expect career salaries similar to those of computer science and engineering major.

2. QUALIFICATION FOR ADMISSION:

Candidates should have passed the higher secondary Examination conducted by the board of Higher Secondary Examination, Government of Tamilnadu or any other examination accepted by the syndicate of Madurai Kamaraj University as equivalent thereto with PHYSICS as one of the subjects along with MATHEMATICS in Higher Secondary Education.

3. DURATION OF THE COURSE:

The students shall undergo the prescribed course of study for a period of three academic years (six semesters).

4. MEDIUM OF INSTRUCTION: English / Tamil

5. OBJECTIVE OF THE PROGRAMME:

The UG course in Physics helps the students to understand the world around us, the world inside us and the world beyond us. Physics encompasses the study of the universe from the smallest sub atomic particles to the largest galaxies. Moreover it is the basis if many sciences like chemistry, oceanography, seismology and can be applied to a bachelor's degree in physics.

Physics challenges our imagination with concepts like relativity and string theory. It leads to great discoveries like computers and lasers that lead to technologies which change our lives – from healing joints to curing cancer and to develop sustainable energy solutions.

6. OUTCOME OF THE PROGRAMME:

The syllabus for B.Sc., Physics degree under semester system has been designed on the basis of Choice Based Credit System, (CBCS) which would focus on job oriented programmes and values added education. It will effect from June 2023 onwards. Duration of the course is three years. The students who are joining the B.Sc., (Physics) degree shall undergo a study period of three academic years - Six semesters.

7. OUTCOME OF THE PROGRAMME:

The Syllabus for B.Sc., Physics degree under semester system has been designed on the basis of Choice Based Credit System, (CBCS) which would focus on job oriented programmes and values added education. It will effect from June 2023 onwards. Duration of the course is three years. The students who are joining the B.Sc., (Physics) degree shall undergo a study period of three academic years – Six Semesters.

While preparing the syllabus, care is taken to provide the requirements of students who opt physics, for developing their skill and competence in their career. Hence after completion of the course, the student will be enriched with recent trends in Physics and be motivated towards higher studies and research activities. During the preparation of the syllabus and curriculum, the UGC model curriculum and syllabi of world best universities were considered.

8. UNITIZATION:

The important concepts of each subject is uniformly distributed in five units and properly required hours to teach are allotted.

9. PATTERN OF SEMESTER EXAMINATION:

The semester examination comprises of two parts i) internal assessment and ii) External examination. The maximum marks for the internal and external examinations are 25 and 75 respectively.

10. THE SCHEME FOR INTERNAL ASSESSMENT:

The Pattern for internal valuation

- ➤ Two tests will be conducted (10 mark each). The average of the two is taken 10 marks
- > 3rd test may be allowed for absentees of any one of the two tests.
- ➤ Group Discussion / Seminar / Quiz 5 marks.
- For Quiz, 2 Quiz should be conducted.
- 2 Assignments: 5 mark each; average 5 marks
- ➤ Peer team teaching and Peer group learning 5 marks

(Students should be grouped into 5 or 6 members. 10% of each subject shall be taught through peer team teaching and learning method and appropriate hours should be allotted.

11. EXTERNAL EXAMINATION:

Student should appear for the external examination at the end of each semester. The University semester examinations will be conducted in the month of November and April for odd and even semesters respectively. He /she must satisfy the minimum attendance as prescribed by the University.

12. QUESTION PAPER PATTERN:

The pattern of Question paper will be as follows.

EXTERNAL Max Marks:75

Time : 3 hours Max.Marks:75

SECTION A(10 X1 =10 Marks)

Question No. 1 to 10 (Multiple Choices)

> Two questions from each unit

> Four choices in each question

> No 'none of these 'choice.

SECTION B(5 X 7 = 35 marks)

> Answer all questions choosing either (a) or (b)

> Answer not exceeding two pages. (One question from each unit)

Question No: 11 - 15

11	(a)	or	11	(b)
12	(a)	or	11	(b)
13	(a)	or	11	(b)
14	(a)	or	11	(b)
15	(a)	or	11	(b)

SECTION C

(3 X 10 = 30 marks)

- > Answer not exceeding four pages.
- > Answer any three out of five (1 Question from each unit)

Questions 16 -20

Section	Typesof questions	No. ofquestion s	No. ofQuestions tobe answered	MarksFo rEach question	TotalMark s
А	Multiple Choice. Twoquestionsfromeach unit	10	1	1	10
В	Not exceeding 2. Pages(eitherortype)– Onefrom eachunit*	5	5	7	35
С	Notexceeding4 Pages (any three out of five – onefromeach unit*	5	3	10	30

There must be at least one problem in section B and section C

13. TherewillbeTwoAlliedsubjectstofulfillthecourseduringthreeyears.

Subject	Maximum marks	Credit	Yearofst udy
Mathematics	200	8	I
Chemistry	400	12	II

• ThesyllabusfortheancillarysubjectscanbegotfromtheAncillaryDepartmentofMathematics,Chemistry/Applied electronics.

Practical:Record NoteBook/Internal	5 +20	=		25
Examinationexternal		=		75
	Total		100	

14.SCHEMEOFEVALUATION:

FortheUniversitytheoryexaminationthequestionpapersettershouldsubmitthescheme ofvaluation alongwiththequestion paper foreachsubject.

15.PASSINGMINIMUM:

- i) A candidate will be eligible for the B.Sc., degree by completing three years (sixsemesters)and passingall theprescribedexaminations.
- ii) A candidate shall be declared as passed the course, if he/she scored a minimum of 35% marks in each paper of all the subjects. He/ She must score a minimum of 27marks out of 75 in the external examination and a minimum of 40 (internal + external)out of 100.

Classification

SI.No	RangeofCCPA	Class
1	40 &abovebut below 50	III
2	50 &abovebut below 60	II
3	60 &Above	l

16 .MODELQUESTIONS:

Modelquestionpapersforafewcoresubject and skilled based papers of Physics are given below.

MODEL QUESTION PAPERSMECHANICSAND PROPERTIESOFMATTER

(Forthosewho joined in June2023)

Time:Threehours

Maximum:75 Marks

Section-A (10x1=10 Marks) Answerall questions

∩h	oose	م ماد،				
CH	oose	une	COH	HClb	มารง	/er.

oos	emecorrectans	swer.		
1.	Inthe caseofel	lastic collision_		energyofthe particleis fullyconserved.
	(a)Potential	(b) Kinetic	(c)Thermal	(d) Electrical
2.	AccordingtoNo	ewton'slaw		
	$(a) F= d_{(m)}$	v)(b) $F = \frac{d}{dt} dt$	$(mp)(c)F = \frac{dy}{dt}$) <i>F=0</i>

dt

3. Moment of inertia of circular disc about an axis through it's centre andperpendicularto its plane

(a)
$$I = MR^2$$

 $\frac{MR^2}{4}$ (b) $I = MR^2$ (c) $I = \frac{MR^2}{2}$ (d) $I = M^2R$

4.	The	edimensions	oftorqueis			
	(a)	MLT ⁻²	(b)ML ² T ⁻²	(c)ML ² T ⁻³	(d)ML ²	² T ⁻¹
5.	disc	coveredtheu	niversallawof g	ravitation		
	(a) N	Newton	(b)Planck	(c)Curie	(d)Kep	bler
6.	Gra	vitationalfie	ldis a			
		(a) Vectorqu (c) Zeroat e nityatearthcr	arthcrust	(b)Sca (d)	llarquar	ntity
7.	sub	stancesrega	aintheiroriginald	dimensionaftert	theremo	ovalofforce
	(a)	Plastic	(b)Elastic	(c)Plasto elas	tic	(d) Rigid
8.		ximum stres sticityis	s upto which th limit	e bodyexhibits	thepro	pertyof
	(a)E	Elastic	(b)Plastic	(c)Tangent		(d)Infinite
9.	Exc	essofpress	ureina cylindrica	al dropis		
	(a)	σ^{r}	(b)σ/ 4r	(c) σ.r		(d)σ/r
10		rnoulli'stheo (a) Bunsen (c)Wingsof		ein		(b)Filterpump (d)All of these
			Sect	ion-B		(5x7=35Marks)
Answ	erAL	L question	schoosingeith	ner(a)or (b)		
11	. (a)\	Whatiscollisi	onandexplainits	stypes? (or)		
	(b)		notes on Newton of linearmom	on's law of mot		l law of
12	. (a)E	Explain brief	lyaboutthe torq	ue (or)		
	(b)[Deduceanex	pressionformor	ment ofinertia c	ofa circu	ılardisc.
13	. (a)	.StateNewto	on's gravitation	allawanddiscus	ssitsapp	lications.
			(or)		
	(b)F	How willyoud	determinethema	ass of Earth?		
14	. (a)	. Calculate t	he η =8x10 ¹⁰ N	I/m² work done	in twis	ting a steel wire

of radius 10^{-3} mandlength 0.25m through an angleof45°

(or)

- (b) Explainthe term Poisson's ratio and discuss its limiting values.
- $15. \ (a) Discuss viscosity, \ Co-efficient of viscosity and streamlined and turbulent motion.$

(or)

(b)Whatisaventurimeter?Explainaboutitsoperation.

Section-C

(3x10=30Marks)

AnsweranyTHREEquestions

- 16. When two smooth spheres undergo direct impact calculate the loss of energyinvolved?
- 17. (a) Deduce an expression for the moment of inertia of a solid sphere about the diameter.
 - (b) Derivetherelationbetweenangularmomentumandtorque.
- 18. Calculatethe gravitationalpotentialatapointoutsidethesphericalshell.
- 19. Describetheexcess of pressure in asynclastic and anticlastic surface.
- 20. StateandexplainBernoulli'stheorem.

17.TEACHINGMETHODOLOGY:

Usual chalk and talk method may be followed. Apart from this seminar, Group Discussion, Peer Team Teaching and Peer Group Learning are practiced in the classroom. Teaching aids like Charts are also used in the classroom, Nowadays Computer Aided Technology, E-

learning, Smart Class Room Practices with Power Point Presentations are also followed.

18. TEXTBOOKS

Thelistoftextbooksprescribedforeachsubjectisgivenunderthesyllabusofconcernedsubject.

19. REFERENCEBOOKS

Thelistoftextbooksprescribedforeachsubjectisgivenunderthesyllabusofconcernedsubject.

20. RE-TOTALINGANDREVALUATIONPROVISION

Students may apply for re-totaling and revaluation after declaration of resultwithin7 days

B.Sc., PHYSICS SYLLABUS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the undergraduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offer courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronicsand other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provides a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes, provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

TANSCHE REC	GULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM
	FRAMEWORK FOR
D	UNDERGRADUATE EDUCATION
Programme	B.Sc., Physics
Programme	
Code	
Duration	3 years [UG]
Programme	PO1: Disciplinary knowledge:
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding
(These are	of one or more disciplines that form a part of an undergraduate
mereguidelines	programme of study
. Faculty can	PO2: Communication Skills:
create POs	Ability to express thoughts and ideas effectively in writing and orally
based on their	communicate with others using appropriate media; confidently share
curriculum or	one's views and express herself/himself; demonstrate the ability to listen
adopt from	carefully; read and write analytically and present complex information in
UGC or the	a clear and concise manner to different groups.
University for	PO3: Critical thinking:
their	Capability to apply the analytic thought to a body of knowledge; analyse
Programme)	and evaluate the proofs, arguments, claims, beliefs on the basis of
	empirical evidences; identify relevant assumptions or implications;
	formulate coherent arguments; critically evaluate practices, policies and
	theories by following scientific approach.
	PO4: Problem solving:
	Capacity to extrapolate from what one has learned and apply their

competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations.

PO5: Analytical reasoning:

Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints.

PO6: Research-related skills:

A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation

PO7: Cooperation/Team work:

Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team

PO8: Scientific reasoning:

Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.

PO9: Reflective thinking:

Critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society.

PO10 Information/digital literacy:

Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.

PO 11 Self-directed learning:

Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.

PO 12 Multicultural competence:

Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.

PO 13: Moral and ethical awareness/reasoning:

Ability toembrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstratingthe ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.

PO 14: Leadership readiness/qualities:

Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 15: Lifelong learning:

Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Programme Specific Outcomes:

PSO1: Placement:

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, and beliefs and apply diverse frames of reference to decisions and actions.

(These are mere guidelines. Faculty can create POs based on their curriculum or adopt from UGC or

University for

Programme)

their

PSO 2: Entrepreneur:

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate start-ups and high potential organizations

PSO3: Research and Development:

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4: Contribution to Business World:

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5: Contribution to the Society:

To contribute to the development of the society by collaborating with stakeholders for mutual benefit

Credit Distribution for UG Programmes

Sem I	Credit	Н	Sem II	Credit	H	Sem III	Credit	H	Sem IV	Credit	H	Sem V	Credit	H	Sem VI	Credit	H
Part 1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	5.1 Core Course – \CC IX	4	5	6.1 Core Course – CC XIII	4	6
Part.2 English	3	6	Part2 English	3	6	Part2 English	3	6	Part2 English	3	6	5.2 Core Course – CC X	4	5	6.2 Core Course – CC XIV	4	6
1.3 Core Course – CC I	5	5	23 Core Course – CC III	5	5	3.3 Core Course – CC V	5	5	4.3 Core Course – CC VII Core Industry Module	5	5	5. 3.Core Course CC -XI	4	5	6.3 Core Course – CC XV	4	6
1.4 Core Course – CC II	5	5	2.4 Core Course – CC IV	5	5	3.4 Core Course – CC VI	5	5	4.4 Core Course – CC VIII	5	5	5. 4.Core Course –/ Project with viva- voce CC -XII	4	5	6.4 Elective -VII Generic/ Discipline Specific	3	5
1.5 Elective I Generic/ Discipline Specific	3	4	2.5 Elective II Generic/ Discipline Specific	3	4	3.5 Elective III Generic/ Discipline Specific	3	4	4.5 Elective IV Generic/ Discipline Specific	3	3	5.5 Elective V Generic/ Discipline Specific	3	4	6.5 Elective VIII Generic/ Discipline Specific	3	5
1.6 Skill Enhancement Course SEC-1	2	2	2.6 Skill Enhancement Course SEC-2	2	2	3.6 Skill Enhancement Course SEC-4, (Entrepreneurial Skill)	1	1	4.6 Skill Enhancement Course SEC-6	2	2	5.6 Elective VI Generic/ Discipline Specific	3	4	6.6 Extension Activity	1	-
1.7 Skill Enhancement -(Foundation Course)	2	2	2.7 Skill Enhancement Course –SEC- 3	2	2	3.7 Skill Enhancement Course SEC-5	2	2	4.7 Skill Enhancement Course SEC-7	2	2	5.7 Value Education	2	2	6.7 Professional Competency Skill	2	2
						3.8 E.V.S.	-	1	4.8 E.V.S	2	1	5.8 Summer Internship /Industrial Training	2				
	23	30		23	30		22	30		25	30		26	30		21	30

Total – 140 Credits

	3 -Year UG ProgrammeB.Sc., Physics Credit Distribution						
Part	Details	No. of Papers	Total Credits	Part Credits			
Part-I	Language (3 Credits)	4	12	12			
Part-II	English (3 Credits)	4	12	12			
	Core Theory (4 Credits)	8	32				
	Core Theory (3 Credits)	2	6				
Dout III	Allied Theory (4 Credits)	2	8	76			
Part-III	Allied Theory (3 Credits)	2	6	76			
	Core Practical (3 Credits)	6	18				
	Allied Practical (3 Credits)	2	6				
	Foundation Course (2 Credits)	1	2				
	Skills Enhancement Course (SEC) NME (2 Credits)	8	16				
Part-IV	Ability Enhancement Compulsory Course (AECCC) Soft Skills (2 Credits)	4	8	39			
	Elective Core (2 Credits)	4	8				
	Summer Internship (1 Credits)	1	1				
	EVS (2 Credit)	1	2				
	Value Education (2 Credits)	1	2				
Part-V	Extension Activity (NSS/NCC/YRC/Physical Education) (1 Credit)	1	1	1			
		51	140	140			

Consolidated Semesterwise and Component wise Credit Distribution

Parts	Sem-I	Sem-II	Sem-III	Sem-IV	Sem-V	Sem-VI	Total Credits
Part-I	3	3	3	3	1	1	12
Part-II	3	3	3	3	-	-	12
Part-III	11	11	13	13	18	18	84
Part-IV	6	6	6	8	1	4	31
Part-V	-	-	-	-	-	1	1
Total	23	23	25	27	19	23	140

Credit Distribution for B.Sc., Physics Programme, Courses with Laboratory Hours

First Year

Semester-I

Part	List of Courses	Credit	No. of
			Hours
Part-I	Language	3	6
Part-II	English	3	4
	Core Theory 1 – Properties of Matter and Acoustics	4	5
Part-III	Core Practical 1 – Physics Practical 1	3	3
	Allied Theory 1 – Allied Mathematics 1	4	6
	Skill Enhancement Course SEC-1 (NME)	2	2
Part-IV	Foundation Course	2	2
	Ability Enhancement Compulsory Course (AECC) Soft Skill-1	2	2
		23	30

Semester-II

Part	List of Courses	Credit	No. of
			Hours
Part-I	Language and	3	6
Part-II	English	3	4
	Core Theory 2 – Heat, Thermodynamics and Statistical Physics	4	5
Part-III	Core Practical 2 – Physics Practical 2	3	3
	Allied Theory 2 – Allied Mathematics 2	4	6
	Skill Enhancement Course -SEC-2 (NME)	2	2
Part-IV	Skill Enhancement Course -SEC-3 (Discipline/Subject	2	2
	Specific)		
	Ability Enhancement Compulsory Course (AECC) Soft Skill-2	2	2
		23	30

Second Year - Semester-III

Part	List of Courses	Credit	No. of
			Hours
Part-I	Language	3	6
Part-II	English	3	4
	Core Theory 3 – Mechanics	4	4
Dont III	Core Practical 3 – Physics Practical 3	3	3
Part-III	Allied Theory 1 – Allied Chemistry 1	3	4
	Allied Practical 1 – Allied Chemistry Practical 1	3	3
	Skill Enhancement Course -SEC-4 (Entrepreneurial Based)	2	2
D . 177	Skill Enhancement Course -SEC-5 (Discipline/Subject	2	2
Part-IV	Specific)		
	Ability Enhancement Compulsory Course (AECC) Soft Skill-3	2	1
	EVS	_	1
		25	30

Semester-IV

Part	List of Courses	Credit	No. of
			Hours
Part-I	Language	3	6
Part-II	English	3	4
	Core Theory 4 – Optics and Laser Physics	4	4
Part-III	Core Practical 4 – Physics Practical 4	3	3
rant-iii	Allied Theory 2 – Allied Chemistry 2	3	4
	Allied Practical 1 – Allied Chemistry Practical 2	3	3
	Skill Enhancement Course -SEC-6 (Discipline/Subject	2	2
	Specific)		
Part-IV	Skill Enhancement Course -SEC-7 (Discipline/Subject	2	2
	Specific)		
	Ability Enhancement Compulsory Course (AECC) Soft Skill-4	2	1
	EVS	2	1
		27	30

Third Year

Semester-V

Part	List of Courses	Credit	No. of
			Hours
Part-III	Core Theory 5 – Electricity, Magnetism and Electromagnetism	4	5
	Core Theory 6 – Atomic and Nuclear Physics	4	5
	Core Theory 7 – Analog and Communication Electronics	3	5
	Core Practical 5 – Physics Practical 5	3	3
	Elective Course 1 (Generic/Discipline Specific) EC 1	2	5
	Elective Course 2 (Generic/Discipline Specific) EC 2	2	5
Part-IV	Internship / Industrial Training (Carried out in II Year Summer	1	-
	Vocation) (30 Hours)		
	Value Education	-	2
		19	30

Semester – VI

Part	List of Courses	Credit	No. of
			Hours
	Core Theory 8 – Quantum Mechanics and	4	5
Part-III	Core Theory 9 – Solid State Physics	4	5
	Core Theory 10 – Digital Electronics and Microprocessor 8085	3	5
	Core Practical 6 – Physics Practical 6	3	3
	Elective Course 3 (Generic/Subject Specific) EC 3	2	4
	Elective Course 4 (Generic/Subject Specific) EC 4 (or) Project	2	4
Part-IV	Skill Enhancement Course -SEC-8 (Discipline/Subject	2	2
	Specific)		
	Value Education	2	2
Part-V	Extension Activity, NSS/NCC/YRC/Physical Education	1	-
	(Outside College Hours)		
		23	30

ELECTIVES COURSES (EC)

- 1. COMMUNICATION SYSTEMS
- 2. ENERGY PHYSICS
- 3. MATHEMATICAL PHYSICS
- 4. ADVANCED MATHEMATICAL PHYSICS
- 5. NUMERICAL METHODS AND C PROGRAMMING
- 6. MATERIALS SCIENCE
- 7. LASERS AND FIBER OPTICS
- 8. DIGITAL PHOTOGRAPHY
- 9. NANO SCIENCE
- 10. MEDICAL INSTRUMENTATION

NON-MAJOR ELECTIVES (NME)

- 1. PHYSICS FOR EVERYDAY LIFE
- 2. ASTROPHYSICS
- 3. MEDICAL PHYSICS
- 4. HOME ELECTRICAL INSTALLATION
- 5. PHYSICS OF MUSIC

COURSE	FIRST SEMESTER – FOUNDATION COURSE
COURSE TITLE	INTRODUCTORY PHYSICS
CREDITS	2
COURSE	To help students get an overview of Physics before learning their
OBJECTIVES	core courses. To serve as a bridge between the school curriculum
	and the degree programme.

UNITS	COURSE DETAILS
UNIT-I	vectors, scalars —examples for scalars and vectorsfrom physical quantities — addition, subtraction of vectors — resolution and resultant of vectors — units and dimensions— standard physics constants
UNIT-II	different types of forces—gravitational, electrostatic, magnetic, electromagnetic, nuclear —mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces
UNIT-III	different forms of energy– conservation lawsof momentum, energy – typesofcollisions –angular momentum– alternate energy sources– real life examples
UNIT-IV	types of motion—linear, projectile, circular, angular, simple harmonic motions — satellite motion — banking of a curved roads — stream line and turbulent motions — wave motion — comparisonoflight and sound waves — free, forced, damped oscillations
UNIT-V	surface tension – shape of liquid drop – angle of contact – viscosity –lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use- conductors, insulators – thermal and electric
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 D.S. Mathur, 2010, Elements of Properties of Matter, S.Chandand Co BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co.
REFERENCE BOOKS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chandand Co.
WEB RESOURCES	 http://hyperphysics.phy- astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/ https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_h ays/

Continuous InternalAssessment	End SemesterExamination	Total	Grade
25	75	100	

COURSEOUTCOMES:

At the end of the course, the student will be able to:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems			
	CO2 Appreciate different forces present in Nature v about phenomena related to these different for				
COURSEOU CO3 Quantify energy in different process and velocity and energy		Quantify energy in different process and relate momentum, velocity and energy			
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis			
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.			

MAPPINGWITHPROGRAMOUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3

COURSE	FIRST SEMESTER -CORE THEORY 1
COURSETITLE	PROPERTIES OF MATTER AND ACOUSTICS
CREDITS	4
COURSE	Study of the properties of matter leads to information which is of
OBJECTIVES	practical value to both the physicist and the engineers. It gives us
	information about the internal forces which act between the
	constituent parts of the substance. Students who undergo this course
	are successfully bound to get a better insight and understanding of
	the subject.

UNITS	COURSEDETAILS
	ELASTICITY: Hooke's law – stress-strain diagram – elastic
	constants –Poisson's ratio – relation between elastic constants and
UNIT-I	Poisson's ratio – work done in stretching and twisting a wire –
	twisting couple on a cylinder – rigidity modulus by static torsion–
	torsional pendulum (with and without masses)
	BENDING OF BEAMS:cantilever— expression for Bending
	moment – expression for depression at the loaded end of the
	cantilever – oscillations of a cantilever – expression for time period –
UNIT-II	experiment to find Young's modulus – non-uniform bending–
	experiment to determine Young's modulus by Koenig's method –
	uniform bending – expression for elevation – experiment to
	determine Young's modulus using microscope
	FLUID DYNAMICS: Surface tension: definition – molecular
	forces– excess pressure over curved surface – application to
	spherical and cylindrical drops and bubbles – determination of
	surface tension by Jaegar's method-variation of surface tension with
UNIT-III	temperature
	<i>Viscosity</i> :definition – streamline and turbulent flow – rate of flow of
	liquid in a capillary tube – Poiseuille's formula –corrections –
	terminal velocity and Stoke's formula– variation of viscosity with
	temperature
	WAVES AND OSCILLATIONS: Simple Harmonic Motion
	(SHM) – differential equation of SHM – graphical representation of
	SHM – composition of two SHM in a straight line and at right angles
UNIT-IV	– Lissajous's figures- free, damped, forced vibrations –resonance and
0111-11	Sharpness of resonance.
	Laws of transverse vibration in strings –sonometer – determination
	of AC frequency using sonometer–determination of frequency using
	Melde'sstringapparatus
	ACOUSTICS OF BUILDINGS AND ULTRASONICS:
UNIT-V	Intensity of sound – decibel – loudness of sound –reverberation –
	Sabine's reverberation formula – acoustic intensity – factors
	affecting the acoustics of buildings.
	Ultrasonic waves: production of ultrasonic waves – Piezoelectric
	crystal method –magnetostriction effect – application of ultrasonic
	waves

	PROFESSIONAL COMPONENTS: expert lectures – seminars —
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	1. D.S.Mathur, 2010, Elements of Properties of Matter,
	S.Chandand Co.
	2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter,
	S.Chandand Co
TEXT BOOKS	3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound,
	AtmaRamand sons
	4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound,
	Second revised edition, Vikas Publishing House.
	5. R.Murugesan,2012, <u>Properties of Matter</u> , S.Chandand Co.
	1. C.J. Smith, 1960, General Properties of Matter, Orient Longman
	Publishers
REFERENCE	2. H.R. Gulati, 1977, Fundamental of General Properties of Matter,
BOOKS	Fifth edition,R. Chand and Co.
	3. A.P French, 1973, Vibration and Waves, MIT Introductory
	Physics, Arnold-Heinmann India.
	1. https://www.biolinscientific.com/blog/what-are-surfactants-and-
	<u>how-do-they-work</u>
	2. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html
	3. https://www.youtube.com/watch?v=gT8Nth9NWPM
WEB	4. https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s
RESOURCES	5. https://www.biolinscientific.com/blog/what-are-surfactants-and-
RESOURCES	<u>how-do-they-work</u>
	6. https://learningtechnologyofficial.com/category/fluid-mechanics-
	<u>lab/</u>
	7. http://www.sound-physics.com/
	8. http://nptel.ac.in/courses/112104026/

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	004	
	CO1	Relate elastic behavior in terms of three modulii of elasticity
		and working of torsion pendulum.
	CO2	Able to appreciate concept of bending of beams and analyze
		the expression, quantify and understand nature of materials.
	CO3	Explain the surface tension and viscosity of fluid and support
		the interesting phenomena associated with liquid surface, soap
		films provide an analogue solution to many engineering
COURCEOUT		problems.
COMES	CO4	Analyze simple harmonic motions mathematically and apply
COMES		them. Understand the concept of resonance and use it to
		evaluate the frequency of vibration. Set up experiment to
		evaluate frequency of ac mains
	CO5	Understand the concept of acoustics, importance of
		constructing buildings with good acoustics.
		Able to apply their knowledge of ultrasonics in real life,
		especially in medical field and assimilate different methods of
		production of ultrasonic waves

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	M	S	M	S
CO2	M	S	S	S	M	M	S	M	S	S
CO3	S	M	S	M	S	S	M	S	S	S
CO4	S	S	S	S	S	M	S	M	M	M
CO5	M	M	S	S	M	S	S	S	S	M

COURSE	FIRST SEMESTER -CORE PRACTICAL 1
COURSETITLE	PRACTICAL 1
CREDITS	3
COURSE	Apply various physics concepts to understand Properties of Matter,
OBJECTIVES	set up experimentation to verify theories, quantify and analyse, able
	to do error analysis and correlate results

Properties of Matter

Minimum of Eight Experiments from the list:

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulus by cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SECOND SEMESTER – CORE THEORY 2
COURSETITLE	HEAT, THERMODYNAMICS and STATISTICAL PHYSICS
CREDITS	4
COURSE	The course focuses to understand a basic in conversion of
OBJECTIVES	temperature in Celsius, Kelvin and Fahrenheit scales. Practical
	exhibition and explanation of transmission of heat in good and bad
	conductor. Relate the laws of thermodynamics, entropy in everyday
	life and explore the knowledge of statistical mechanics and its
	relation

UNITS	COURSEDETAILS
	CALORIMETRY: specific heat capacity – specific heat capacity
	of gases C _P and C _V – Meyer's relation – Joly's method for
	determination of C _V – Regnault'smethodfordetermination of C _P
UNIT-I	LOWTEMPERATUREPHYSICS: Joule-Kelvin effect – porous
	plug experiment – Joule-Thomson effect –Boyletemperature –
	temperature of inversion – liquefaction of gas by Linde's Process –
	adiabatic demagnetisation.
	THERMODYNAMICS-I: zeroth law and first law of
UNIT-II	thermodynamics – P-V diagram – heat engine –efficiency of heat
UNII-II	engine – Carnot's engine, construction, working and efficiency of
	petrol engine and diesel engines – comparison of engines.
	THERMODYNAMICS-II: second law of thermodynamics –
	entropy of an ideal gas – entropy change in reversible and
	irreversible processes – T-S diagram –thermodynamical scale of
UNIT-III	temperature – Maxwell's thermodynamical relations –Clasius-
	Clapeyron's equation (first latent heat equation) – third law of
	thermodynamics – unattainability of absolute zero – heat death.
	HEATTRANSFER: modes of heat transfer: conduction,
	convection and radiation.
	Conduction: thermal conductivity – determination of thermal
	conductivity of a good conductor by Forbe's method –
UNIT-IV	determination ofthermal conductivity of a bad conductor by Lee's
	disc method.
	Radiation: black body radiation (Ferry's method) – distribution of
	energy in black body radiation – Wien's law and Rayleigh Jean's
	law –Planck's law of radiation – Stefan's law – deduction of
	Newton's law of cooling from Stefan's law.
	STATISTICALMECHANICS: definition of phase-space – micro
	and macro states – ensembles –different types of ensembles –
UNIT-V	classical and quantum Statistics – Maxwell-Boltzmann statistics –
CIVII V	expression for distribution function – Bose-Einstein statistics –
	expression for distribution function – Fermi-Dirac statistics –
	expression for distribution function – comparison of three statistics.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars —
	webinars – industry inputs – social accountability – patriotism

	1. BrijlalandN. Subramaniam, 2000, Heat and Thermodynamics,
	S.Chandand Co.
	2. NarayanamoorthyandKrishnaRao, 1969,Heat,Triveni Publishers,
	Chennai.
	3. V.R.KhannaandR.S.Bedi, 1998 1 st Edition, Text book of Sound,
TEXT BOOKS	Kedharnaath Publish and Co, Meerut
	4. Brijlal and N. Subramanyam, 2001, Waves and
	Oscillations, Vikas Publishing House, New Delhi.
	5. Ghosh, 1996, Text Book of Sound, S.ChandandCo.
	6. R.MurugeshanandKiruthigaSivaprasath, Thermal Physics,
	S.Chandand Co.
	1. J.B.RajamandC.L.Arora, 1976, Heat and Thermodynamics, 8 th
	edition, S.Chandand Co. Ltd.
	2. D.S.Mathur, Heat and Thermodynamics, Sultan Chand and
	Sons.
REFERENCE	3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th
BOOKS	Edition, S. Chand and Co.
	4. Resnick, HallidayandWalker, 2010, Fundamentals of Physics,
	6th Edition.
	5. Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021
	University Physics with Modern Physics 15th Edition, Pearson.
	1. https://youtu.be/M_5KYncYNyc
	2. https://www.youtube.com/watch?v=4M72kQulGKkandvl=en
WED	3. Lecture 1: Thermodynamics Part 1 Video Lectures Statistical
WEB	Mechanics I: Statistical Mechanics of Particles Physics MIT
RESOURCES	<u>OpenCourseWare</u>
	4. http://www.freebookcentre.net/Physics/Physics-Books-
	Online.html

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	•	
	CO1	Acquires knowledge on how to distinguish between
		temperature and heat. Introduce him/her to the field of
		thermometry and explain practical measurements of high
		temperature as well as low temperature physics. Student
COURSEOUT		identifies the relationship between heat capacity, specific heat
COMES		capacity. The study of Low temperature Physics sets the basis
		for the students to understand cryogenics, superconductivity,
		superfluidity and Condensed Matter Physics
	CO2	Derive the efficiency of Carnot's engine. Discuss the
		implications of the laws of Thermodynamics in diesel and
		petrol engines
	CO3	Able to analyze performance of thermodynamic systems viz
		efficiency by problems. Gets an insight into thermodynamic
		properties like enthalpy, entropy
	CO4	Study the process of thermal conductivity and apply it to good
		and bad conductors. Quantify different parameters related to
		heat, relate them with various physical parameters and analyse
		them
	CO5	Interpret classical statistics concepts such as phase space,
		ensemble, Maxwell-Boltzmann distribution law. Develop the
		statistical interpretation of Bose-Einstein and Fermi-Dirac .
		Apply to quantum particles such as photon and electron
	l	1 - LL-A to James and harmone same as broaden and along the

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	S	M	S	S	S	M	M	S	M

COURSE	SECOND SEMESTER – COREPRACTICAL 2			
COURSETITLE	PRACTICAL 2			
CREDITS	3			
COURSE	COURSE Apply their knowledge gained about the concept of heat and sound			
OBJECTIVES waves, resonance, calculate frequency of ac mains set up				
	experimentation to verify theories, quantify and analyse, able to do			
	error analysis and correlate results			
HEAT, OSCILLATIONS, WAVES and SOUND				

Minimum of Eight Experiments from the list:

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latent heat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's-Boltzmans law.
- 10. Determination of thermal conductivity of rubber tube.
- 11. Helmholtz resonator.
- 12. Velocity of sound through a wire using Sonometer.
- 13. Determination of velocity of sound using Kunds tube.
- 14. Determination of frequency of an electrically maintained tuning fork
- 15. To verify the laws of transverse vibration using sonometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass per unit length of two strings using Melde's apparatus.
- 18. Frequency of AC by using sonometer.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	THIRD SEMESTER - CORE
COURSETITLE	MECHANICS
CREDITS	4
COURSE OBJECTIVES	This course allows the students: To have a basic understanding of the laws and principles of mechanics; To apply the concepts of forces existing in the system; To understand the forces of physics in everyday life; To visualize conservation laws; To apply Lagrangian equation to solve complex problems.

UNITS	COURSEDETAILS
	LAWS OF MOTION: Newton's Laws – forces – equations of
	motion – frictional force – motion of aparticlein a
	uniformgravitational field – types of everyday forces in Physics.
	Gravitation: Classical theory of gravitation–Kepler's laws,
	Newton's law of gravitation – Determination of G by Boy's
UNIT-I	method – Earth-moon system – weightlessness – earth satellites –
	parking orbit – earth density – mass of the Sun – gravitational
	potential – velocity of escape – satellite potential and kinetic
	energy –Einstein's theory of gravitation – introduction –principle
	of equivalence – experimental tests of general theory of relativity –
	gravitational red shift – bending of light – perihelion of mercury.
	CONSERVATION LAWS OF LINEAR AND ANGULAR
	MOMENTUM: conservation of linear and angular momentum –
	Internal forces and momentum conservation – center of mass –
UNIT-II	examples – general elastic collision of particles of different masses
UNII-II	– system with variable mass – examples – conservation of angular
	momentum – torque due to internal forces – torque due to gravity –
	angular momentum about center of mass – proton scatteringby
	heavy nucleus.
	CONSERVATION LAWS OF ENERGY: Introduction –
	significance of conservation laws – law of conservation of energy
	concepts of work- power – energy – conservative forces – potential
UNIT-III	energy and conservation of energy in gravitational and electric field
	– examples –non-conservative forces – general law of conservation
	of energy.
	RIGID BODY DYNAMICS: t ranslational and rotational motion –
	angular momentum – moment of inertia – general theorems of
UNIT-IV	moment of inertia – examples – rotation about fixed axis – kinetic
OMII-IV	energy of rotation – examples – body rollingalong a plane surface –
	body rolling down an inclined plane – gyroscopic precision –
	gyrostatic applications.
	LAGRANGIAN MECHANICS: generalized coordinates –
UNIT-V	degrees of freedom – constraints - principle of virtual work and D'
	Alembert's Principle – Lagrange's equation from D' Alembert's
	principle – application –simple pendulum – Atwood's machine.

UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 J.C.Upadhyaya, 2019, Classical Mechanics, Himalaya Publishing house, Mumbai. P.DuraiPandian, LaxmiDuraiPandian, MuthamizhJayapragasam,2005, Mechanics, 6threvised edition, S.Chandand Co. D.S.Mathur and P.S.Hemne, 2000, Mechanics, Revised Edition, S.Chandand Co. Narayanamurthi, M.andNagarathnam. N, 1998, Dynamics. The National Publishing, Chennai. Narayanamurthi, M. and Nagarathnam, N, 1982, Statics, Hydrostatics and Hydrodynamics, The National Publishers, Chennai.
REFERENCE BOOKS	 Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addison and Wesely. Halliday, David and Robert, Resnick, 1995, Physics Vol.I. New Age, International, Chennai. Halliday, David Robert Resnick and Walker Jearl, 2001, Fundamentals of Physics, John Wiley, New Delhi
WEB RESOURCES	1. https://youtu.be/X4_K-XLUIB4 2. https://nptel.ac.in/courses/115103115 3. https://www.youtube.com/watch?v=p075LPq3Eas 4. https://www.youtube.com/watch?v=mH_pS6fruyg 5. https://onlinecourses.nptel.ac.in/noc22_me96/preview 6. https://www.youtube.com/watch?v=tdkFc88Fw-M 7. https://onlinecourses.nptel.ac.in/noc21_me70/preview

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion
	CO2	Acquire the knowledge on the conservation laws
COURSEOU TCOMES	CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non-conservative forces
	CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept
	CO5	Appreciate Lagrangian system of mechanics, apply D' Alemberts principle

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	M	S	S
CO2	S	S	S	M	S	M	S	S	S	M
CO3	S	S	S	S	S	S	M	S	M	S
CO4	M	S	S	S	M	S	S	M	S	S
CO5	S	S	M	S	S	M	S	S	S	M

COURSE	THIRD SEMESTER - COREPRACTICAL 3
COURSETITLE	PRACTICAL 3
CREDITS	3
COURSE Construct circuits to learn about the concept of electricity, current	
OBJECTIVES	resistance in the path of current, different parameters that affect a
	circuit. Set up experiments, observe, analyse and assimilate the concept
·	

ELECTRICITY

Minimum of Eight Experiments from the list:

- 1. Calibration of low range and high range voltmeter using potentiometer
- 2. Calibration of ammeter using potentiometer.
- 3. Measurement of low resistances using potentiometer.
- 4. Determination of field along the axis of a current carrying circular coil.
- 5. Determination of earth's magnetic field using field along axis of current carrying coil.
- 6. Determination of specific resistance of the material of the wireusing PO box.
- 7. Determination of resistance and specific resistance using Carey Foster's bridge.
- 8. Determination of internal resistance of a cell using potentiometer.
- 9. Determination of specific conductance of an electrolyte.
- 10. Determination of e.m.f of thermo couple using potentiometer
- 11. Determination of capacitance using Desauty's bridge and B.G./Spot galvanometer/head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells using BG.
- 14. Comparison of capacitance using BG.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FOURTH SEMESTER – CORE THEORY 4
COURSETITLE	OPTICS andLASER PHYSICS
CREDITS	4
COURSE OBJECTIVES	To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics; To explain the behaviour of light in different mediums; To understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day to day life; To understand the design of optical systems and methods to minims aberrations; To understand the working and applications of laser

UNITS	COURSEDETAILS
UNIT-I	LENS AND PRISMS: Fermat's principle of least time – postulates of geometrical optics – thick and thin lenses – focal length, critical thickness, power and cardinal points of a thick lens – narrow angled prisms. Lens: aberrations: spherical aberration, chromaticaberrations, coma, and astigmatism – curvature of the field – distortion – chromatic aberrations methods. Prism: dispersion, deviation, aberrations - applications rainbows and halos, constant deviation spectroscope. Eyepieces: advantage of an eyepiece over a simple lens – Huygen's and Ramsden's eyepieces, construction and working –merits and demerits of the eyepiece.
	Resolving power: Rayleigh's criterion for resolution – limit of resolution for the eye – resolving power of, (i) Prism (ii) grating (iii) telescope
UNIT-II	INTERFERENCE: division of wave front, Fresnel's biprism – fringes with white light – division of amplitude: interference in thin films due to, (i) reflected light, (ii) transmitted light – colours of thin films applications – air wedge – Newton's rings. Interferometers: Michelson's interferometer – applications, (i) determination of the wavelength of a monochromatic source of light, (ii) determination of the wavelength and separation D ₁ and D ₂ lines of sodium light, (iii) determination of a thickness of a mica sheet.
UNIT-III	DIFFRACTION: Fresnel's assumptions – zone plate – action of zone plate for an incident spherical wave front – differences between a zone plate and a convex lens –Fresnel type of diffraction – diffraction pattern due to a straight edge – positions of maximum and minimum intensities – diffraction due to a narrow slit –Fraunhofer type of diffraction – Fraunhofer diffraction at a single slit – plane diffraction grating – experiment to determine wavelengths – width of principal maxima.

	DOLADICATION C. 1 C. C. II C. C.
UNIT-IV	POLARISATION: optical activity – optically active crystals – polarizer and analyser–double refraction – optic axis, principal plane – Huygens's explanation of double refraction in uniaxial crystals – polaroids and applications – circularlyandelliptically polarized light –quarter wave plate – half wave plate – production and detection of circularly and elliptically polarized lights – Fresnel's explanation – specific rotation – Laurent half shade polarimeter– experiment to determine specific rotatory power.
UNIT-V	LASERS: general principles of lasers – properties of lasers action – spontaneous and stimulated emission – population inversion – optical pumping – He-Ne laser (principle and working) – CO ₂ laser (principle and working) semiconductor laser – laser applications – holography.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 Subramaniam. N and Brijlal, 2014, Optics, 25thEd,S.Chandand Co. P.R.Sasikumar, 2012, Photonics, PHIPvt Ltd, New Delhi. V.Rajendran, 2012, Engineering Physics, Tata McGraw Hill.
REFERENCE BOOKS	 Sathyaprakash, 1990, Optics, VIIedition, RatanPrakashanMandhir, New Delhi. AjoyGhatak, 2009, Optics, 4thedition, PHIPvt Ltd, New Delhi. D.Halliday, R.Resnick and J. Walker, 2001, Fundamentals of Physics, 6th edition, Willey, New York. Jenkins A. Francisand White, 2011, Fundamentals of Optics, 4th edition, McGraw Hill Inc., New Delhi.
WEB RESOURCES	 https://science.nasa.gov/ems/ https://www.youtube.com/watch?v=tL3rNc1G0qQandlist=RDCM UCzwo7UlGkb-8Pr6svxWo-LAandstart_radio=1andt=2472 https://science.nasa.gov/ems/ https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/index.html http://www.thephysicsmill.com/2014/03/23/sky-blue-lord-rayleigh-sir-raman-scattering/

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces
	CO2	Discuss the principle of superposition of wave, use these ideas to understand the wave nature of light through working of interferometer
COURSEOU TCOMES	CO3	Extend the knowledge about nature of light through diffraction techniques; apply mathematical principles to analyse the optical instruments
	CO4	Interpret basic formulation of polarization and gain knowledge about polarimeter, appraise its usage in industries
	CO5	Relate the principles of optics to various fields of IR, Raman and UV spectroscopy and understand their instrumentation and application in industries

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	M	M	M	S	S	M	M
CO2	M	S	M	S	M	S	M	M	S	S
CO3	S	M	S	S	S	M	S	S	M	M
CO4	S	M	S	M	M	S	M	M	S	M
CO5	S	M	S	M	S	S	M	S	S	S

COURSE	FOURTH SEMESTER - CORE PRACTICAL 4		
COURSETITLE	PRACTICAL 4		
CREDITS	3		
COURSE	Demonstrate various optical phenomena principles, working, apply with		
OBJECTIVES	various materials and interpret the results.		
LICHT(any sight ayyanimanta)			

LIGHT(any eight experiments)

Minimum of Eight Experiments from the list:

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of Cauchy's Constants.
- 7. Determination of resolving power of grating
- 8. Determination of resolving power of telescope
- 9. Comparison of intensities using LummerBrodhum Photometer.
- 10. Determination of range of motion using Searlesgoniometer.
- 11. Verification of Newton's formula for a lens separated by a distance.
- 12. Determination of refractive index of a given liquid by forming liquid lens
- 13. Determination of refractive index using Laser.
- 14. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 15. Determination of resolving power of Diffraction grating using Laser
- 16. Determinationofwire using Laser.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIFTH SEMESTER – CORE THEORY 3
COURSETITLE	ELECTRICITY, MAGNETISM ANDELECTROMAGNETISM
CREDITS	4
COURSE OBJECTIVES	To classify materials based on their electrical and magnetic properties. To analysethe working principles of electrical gadgets. To understand the behaviour of dc, ac and transient currents. To know about the communication by electromagnetic waves.

UNITS	COURSE DETAILS
	CAPACITORS AND THERMO ELECTRICITY: capacitor –
UNIT-I	principle – capacitance of spherical and cylindrical capacitors –
	capacitance of a parallel plate capacitor (with and without dielectric
	slab) – effect of dielectric –Carey Foster bridge – temperature
	coefficient of resistance – Seebeck effect – laws of thermo emf –
	Peltier effect – Thomson effect – thermoelectric diagrams –uses of
	thermoelectric diagrams - thermodynamics of thermo couple -
	determination of Peltier and Thomson coefficients.
	MAGNETIC EFFECTS OF CURRENT: Biot and Savart's law –
	magnetic induction due to circular coil – magnetic induction due to
	solenoid – Helmholtz tangent galvanometer –force on a current
TINITED IT	element by magnetic field – force between two infinitely long
UNIT-II	conductors – torque on a current loop in a field - moving coil
	galvanometer – damping correction – Ampere's circuital law –
	differential form – divergence of magnetic field – magnetic
	induction due to toroid.
	MAGNETISM AND ELCTROMAGNETIC INDUCTION:
	magnetic induction B – magnetization M - relation between B, H
	and M – magnetic susceptibility – magnetic permeability –
	experiment to draw B-H curve - energy loss due to hysteresis -
UNIT-III	Importance of hysteresis curves – Faraday and Lenz laws –vector
	form – self-induction – coefficient of self-inductance of solenoid –
	Anderson's method – mutual induction – coefficient of mutual
	inductance between two coaxial solenoids – coefficient of coupling
	- earth inductor- determination of angle of $\operatorname{dip}(\Phi)$
	TRANSIENT AND ALTERNATING CURRENTS: growth and
	decay of current in a circuit containing resistance and inductance –
	growth and decay of charge in a circuit containing resistance and
UNIT-IV	capacitor - growth and decay of charge in an LCR circuit
	(expressions for charge only) – peak, average and rms values of ac
	- LCR series and parallel circuits - resonance condition - Q factor
	– power factor.
	MAXWELLS EQUATIONS AND ELECTROMAGNETIC
UNIT-V	WAVES: Maxwell's equations in vacuum, material media—
	physical significance of Maxwell's equations -displacement
	current – plane electromagnetic waves in free space – velocity of
	light - Poynting vector-electromagnetic waves in a linear
	homogenous media – refractive index.

UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars —
UNII-VI	webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 Murugeshan. R., - Electricity and Magnetism, 8thEdn, 2006, S.Chandand Co, New Delhi.\ Sehgal D.L., Chopra K.L, Sehgal N.K., - Electricity and Magnetism, Sultan Chand and Sons, New Delhi. M. Narayanamurthy and N. Nagarathnam, Electricity and Magnetism, 4th Edition.
	5. National Publishing Co., Meerut.
REFERENCE BOOKS	 1. Brijlal and Subramanian, Electricity and Magnetism, 6th Edn.,Ratanand Prakash, Agra. 2. Brijlal, N.Subramanyan and JivanSeshan, Mechanics and Electrodynamics (2005), 3. Eurasia Publishing House (Pvt.) Ltd., New Delhi. 4. David J. Griffiths, Introduction to Electrodynamics, 2ndEdn. 1997, Prentice Hall of 5. India Pvt. Ltd., New Delhi 6. D. Halliday, R. Resnik and J. Walker - Fundamentals of Physics, 6thEdn., Wiley, NY, 2001.
WEB RESOURCES	8. https://www.edx.org/course/electricity 9. https://www.udemy.com/courses/ electricity 10. https://www.edx.org/course/magnetism 11. http://www.hajim.rochester.edu/optics/undergraduate/courses.html

Continuous InternalAssessment	End Semester Examination	Total	Grade

25	75	100	
==	, e	-00	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Describe various thermo-electric effects and their properties.					
	CO2	Apply Biot and Savart law to study the magnetic effect of electric current.					
COURSEOUT COMES	CO3	Use Faraday and Lenz laws in explaining self and mutual inductance.					
COVIES	CO4	Analyze the time variation of current and potential difference in AC circuits.					
	CO5	Relate different physical quantities used to explain magnetic properties of materials.					

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	S	M	S	S	S	M	M	S	M

COURSE	FIFTH SEMESTER - CORE			
COURSE TITLE	ATOMIC and NUCLEAR PHYSICS			
CREDITS	4			

COURSE	To make students understand the development of atom models,
OBJECTIVES	quantum numbers, coupling schemes and analysis of magnetic
	moments of an electrons; To gain knowledge on excitation and
	ionization potentials, splitting of spectral lines in magnetic and
	electric fields; To get knowledge on radioactive decay; To know the
	concepts used in nuclear reaction; to understand the quark model of
	classification of elementary particles.

UNITS	COURSE DETAILS
UNIT-I	VECTOR ATOM MODEL: introduction to atom model – vector atom model – electron spin –spatial quantisation– quantum numbers associated with vector atom model – L-S and J-J coupling – Pauli's exclusion principle – magnetic dipole moment due to orbital motion and spin motion of the electron – Bohr magnetron – Stern-Gerlach experiment – selection rules – intensity rule.
UNIT-II	ATOMIC SPECTRA: origin of atomic spectra – excitation and ionization potentials – Davis and Goucher's method – spectral terms and notations – fine structure of sodium D-lines – Zeeman effect –Larmor's theorem – quantum mechanical explanation of normal Zeeman effect – anomalous Zeeman effect (qualitative explanation) –Paschen-Back effect – Stark effect.
UNIT-III	RADIOACTIVITY: discovery of radioactivity – natural radio activity – properties of alpha rays, beta rays and gamma rays – Geiger-Nuttal law – alpha particle spectra –Gammow's theory of alpha decay (qualitative study) – beta ray spectra – neutrino theory of beta decay – nuclear isomerism – internal conversion – nonconservation of parity in weak interactions.
UNIT-IV	NUCLEAR REACTIONS: conservation laws of nuclear reaction — Q-value equation for a nuclear reaction — threshold energy — scattering cross section — artificial radio activity — application of radio isotopes — classification of neutrons — models of nuclear structure — liquid drop model — shell model.
UNIT-V	ELEMENTARY PARTICLES: classification of elementary particles – fundamental interactions – elementary particle quantum numbers –iIsospin and strangness quantum number – Conservation laws and symmetry – quarks – quark model (elementary ideas only) – discovery of cosmic rays – primary and secondary cosmic rays – latitude effect – altitude effect.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 R. Murugesan, Modern Physics, S. Chand and Co. (All units) (Units IandII-Problems) Brijlaland N. Subrahmanyam, Atomic and Nuclear Physics, S. Chand and Co. (All units) J. B. Rajam, Modern Physics, S. Chand and Co. SehgalandChopra, Modern Physics, Sultan Chand, New Delhi Arthur Beiser— Concept of Modern Physics, McGraw Hill

	Publication, 6 th Edition.	
REFERENCE BOOKS	 Perspective of Modern Physics, Arthur Beiser, McGraw Hill. Modern Physics, S. Ramamoorthy, National Publishing and Co. Laser and Non-Linear Optics by B.B.Laud, Wiley Easter Ltd.,NewYork,1985. Tayal, D.C.2000 – Nuclear Physics, Edition, Himalaya Publishing House, Mumbai. Irving Kaplan (1962) Nuclear Physics, Second Edition, Oxford and IBH Publish and Co, New Delhi. J.B. Rajam– Atomic Physics, S. Chand Publication, 7th Edition. Roy and Nigam, – Nuclear Physics (1967) First edition, Wiley Eastern 	
WEB RESOURCES	Limited, New Delhi. 1. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html 2. https://makingphysicsfun.files.wordpress.com/2015/01/photoric-effect.pptx 3. https://www.khanacademy.org/science/physics/quantum-physics/in-in-nuclei/v/types-of-decay 4. https://www.khanacademy.org/science/in-in-class-12th-physindia/nuclei	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

COURSEO	CO1	Listthe properties of electrons and positive rays, definespecific charge of positive rays and knowaboutdifferent mass spectrographs.				
	CO2	Outlinephotoelectric effect and the terms related to it, Statelaws of photoelectric emission, Explain experiments and applications of photo electric effect, Solve problems based on photoelectric equation. Explain different atom models. Described ifferent quantum				
UTCOMES	COS	Explain different atom models, Describedifferent quantum numbers and different coupling schemes.				
	CO4	Differentiate between excitation and ionization potentials, Explain Davis and Goucher's experiment, Applyselection rule, Analyse Paschen-Back effect, Compare Zeeman and Stark effect.				
	CO5	Understand the condition for production of laser, Appreciate various properties and applications of lasers.				

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	S	S	M	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	M	S	S	S
CO4	M	S	S	S	S	M	S	M	M	M
CO5	S	M	S	S	M	S	S	M	M	S

COURSE	FIFTH SEMESTER – CORE
COURSETITLE	ANALOG AND COMMUNICATION ELECTRONICS
CREDITS	3

COURSE	To studythe design, working and applications of semiconducting					
OBJECTIVES	devices. To construct various electronic circuits. To study them in					
	details. To study the basis of audio and video communication					
	systems and the aspects of satellite and FibreOptic					
	Communications.					

UNITS	COURSE DETAILS
UNIT-I	DIODES: diode characteristics – rectifiers - clipper circuits, clamping circuits. half wave rectifier, center tapped and bridge fullwave rectifiers, calculation of efficiency and ripple factor. DC power supply: Block diagram of a power supply, qualitative description of shunt capacitor filter, Zener diode as voltage regulator, temperature coefficient of Zener diode.
UNIT-II	TRANSISTOR AMPLIFIERS: transistor configurations: CB, CE CC modes – I-V characteristics and hybrid parameters – DC load line – Q point self-bias – RC coupledCE amplifier –power amplifiers – classification of power amplifiers: A, B, C – push pull amplifiers – tuned amplifiers.
UNIT-III	TRANSISTOR OSCILLATORS: feedback amplifier - principle of feedback, positive and negative feedback of voltage and current gain, advantages of negative feedback - Barkhausen's criterion. Transistor oscillators: Hartely, Colpitt, Phase shift oscillators with mathematical analysis.
UNIT-IV	OPERATIONAL AMPLIFIERS: differential amplifiers – OPAMP characteristics –IC 741 pin configuration – inverting and non-inverting amplifiers – unity follower –summing and difference amplifiers – differentiator and integrator – astablemultivibrator (square wave generator) – monostable vibrator
UNIT-V	MODULATION AND DEMODULATION theory of amplitude modulation - frequency modulation - comparison of AM and FM - phase modulation - sampling theorem - pulse width modulation - pulse modulation systems: PAM, PPM, and PCM - demodulation: AM and FM detection - duper heterodyne receiver (block diagram)
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 V.K.Mehta - Principles of Electronics, S.Chandand Co. Ltd., 2004. V.Vijayendran - Integrated Electronics, S.Vishwanathan Publishers, Chennai. B.L. Theraja - A Text Book of Electrical Technology. John D. Ryder - Electronic fundamentals and Applications. Malvino - Electronic Principles, Tata McGraw Hill.
REFERENCE BOOKS	 B. Grob - Basic Electronics, 6th edition, McGraw Hill, NY, 1989. Herbert Taub and Donald schilling - Digital Integrated Electronics, McGraw Hill, NY. Ramakant A Op amp principles and linear integrated circuits, Gaykward

	4. Bagde and S. P. Singh - Elements of Electronics.
	5. Millman and Halkias- Integrated Electronics, Tata McGraw
	Hill.
	1. https://www.queenmaryscollege.edu.in/eresources/undergraduat
	eprogram/py157
WEB	2. www.ocw.mit.edu>> Circuits and Electronics
RESOURCES	3. www.ocw.mit.edu>> Introductory Analog Electronics Laboratory
	4. https://www.elprocus.com > semiconductor devices
	5. technology">https://www.britannica.com>technology

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Explain the basic concepts of semiconductors devices.					
	CO2	know and classify the basic principles of biasing and transistor					
COLIDERO		amplifiers					
	COURSEO TCOMES CO3 Acquire the fundamental concepts of oscillators. CO4 Understand the working of operational amplifiers						
UTCOMES							
	Learn and analyze the operations of sequential and						
		combinational digital circuits					

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	S	S	M	S	M	M	S	M	M	M
CO3	M	M	S	L	S	S	L	S	S	S
CO4	M	S	S	S	S	S	S	M	L	M
CO5	S	M	S	S	M	M	S	M	M	S

COURSE	FIFTH SEMESTER – CORE PRACTICAL 5

COURSETITLE	PRACTICAL 5			
CREDITS	3			
COURSE	Demonstrate various optical phenomena principles, working, apply with			
OBJECTIVES	various materials and interpret the results.			
GENERAL				

Minimum of Eight Experiments from the list:

- 1. Diffraction grating Normal incidence.
- 2. Diffraction grating minimum deviation.
- 3. Diffraction at a wire.
- 4. Specific rotation of sugar solution.
- 5. Bi-prism Determination of \square .
- 6. Thickness of a thin film of Bi-prism
- 7. Brewster's law polarization
- 8. Double refraction (\square e and \square o)
- 9. Y by Corlus method.
- 10. Dispersive power of plane diffraction grating.
- 11. Diffraction a straight edge.
- 12. Kundt's tube Velocity of sound, Adiabatic Young's modulus of the material of the rod.
- 13. Forbe's method Thermal conductivity of a metal rod.
- 14. Spectrometer– Grating Normal incidence Wave length of Mercury spectral lines.
- 15. Spectrometer Grating Minimum deviation Wave length of Mercury spectral lines.
- 16. Spectrometer (i-d) curve.
- 17. Spectrometer (i-i') curve.
- 18. Spectrometer Narrow angled prism.
- 19. Rydberg's constant
- 20. e/m Thomson method
- 21. h by photocell
- 22. Spectral response of photo conductor (LDR).
- 23. Potentiometer Resistance and Specific resistance of the coil.
- 24. Potentiometer E.M.F of a thermocouple.
- 25. Carey Foster's bridge Temperature coefficient of resistance of the coil.
- 26. Deflection Magnetometer Determination of Magnetic moment of a bar magnet and B_Husing circular coil carrying current.
- 27. Vibration magnetometer Determination of B_H using circular coil carrying current– Tan B position.
- 28. B.G Figure of Merit Charge Sensitivity

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SIXTHSEMESTER – CORE
COURSETITLE	QUANTUM MECHANICS AND RELATIVITY
CREDITS	4
COURSE OBJECTIVES	To understand the theory of relativity, its postulates and the consequences. To learn the importance of transformation equations and also to differentiate between special and general theory of relativity. To interpret the wave theory of matter with various theoretical and experimental evidences. To derive and use Schrodinger's wave equation and also learn about various operators. To solve Schrodinger's wave equation for simple problems and analyse to understand the solutions.

UNITS	COURSE DETAILS
	SPECIAL THEORY OF RELATIVITY: Michelson-Morley
	experiment–frames of reference – Galilean Relativity – postulates
	of special theory of relativity – Lorentz transformation –
UNIT-I	consequences – time dilation–concept of simultaneity – Doppler
	effect – length contraction–variation of mass with velocity –
	Einstein's mass-energy relation—relativistic momentum—energy
	relation
	TRANSFORMATION RELATIONS: transformation of velocity,
	mass, energy and momentum – four vector – invariance under
	transformation – Lorentz transformation and velocity addition
UNIT-II	equations in terms of hyperbolic functions.
	GENERAL THEORY OF RELATIVITY: Inertial and
	Gravitational mass – Principle of equivalence – Experimental
	evidences for General theory of Relativity
	PHOTONS AND MATTER WAVES: difficulties of classical
	physics and origin of quantum theory – black body radiation –
	Planck's law – Einstein's photoelectric equation – Compton effect
UNIT-III	– pair production – De Broglie waves – phase velocity and group
	velocity – Davisson and Germer's experiment – uncertainty
	principle – consequences – illustration of Gamma ray microscope.
	OPERATORS AND SCHRÖDINGER EQUATION: postulates
	of quantum mechanics – Wave function and its interpretation –
	Schrödinger's equation – linear operators – Eigenvalue –
UNIT-IV	Hermitian operator – properties of Hermitian operator – observable
	- operators for position, linear Momentum, angular momentum
	components –commutatoralgebra –commutator between these
	operators –expectation values of position and momentum –
	Ehrenfesttheorem.
	SOLVING SCHRÖDINGER EQUATION FOR SIMPLE PROBLEMS: one-dimensional problems: (i) particle in a box, (ii)
	barrier penetration problem – quantum mechanical tunneling, (iii)
UNIT-V	linear harmonic oscillator.
	higher dimensional problems: (i) Rigid rotator (qualitative), (ii)
	Hydrogen atom (qualitative).

UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars —
UNII-VI	webinars – industry inputs – social accountability – patriotism
	1. Modern Physics, R. Murugeshan, KiruthigaSivaprasath,S.
	Chand and Co.,17 th Revised Edition, 2014.
	2. Concepts of Modern Physics, A.Beiser, 6 th Ed., McGraw-Hill,
	2003.
TEXT BOOKS	3. Special Theory of Relativity, S.P. Puri, Pearson Education,
TEXT DOORS	India, 2013.
	4. Quantum Mechanics, GhatakandLoganathan, Macmillan
	Publications.
	5. Quantum mechanics – Satyaprakash and Swati Saluja.
	KedarNath Ram Nathand Co.
	1. Fundamentals of Modern Physics, Peter J. Nolan, 1 st Edition,
	2014, by Physics
	2. Quantum Mechanics, V. Devanathan, Narosa Pub. House,
DEFENDANCE	Chennai, 2005.
REFERENCE	3. Quantum Mechanics, V.K. Thangappan, New Age
BOOKS	International, New Delhi.
	4. A Text Book of Quantum Mechanics,
	MathewsandVenkatesan, Tata McGraw Hill, New Delhi. 5. Introduction to Ouantum Mechanics, Pauling and Wilson.
	5. Introduction to Quantum Mechanics, Pauling and Wilson, McGraw Hill Co., New York.
	1. http://hyperphysics.phy-astr.gsu.edu/hbase/qapp.html
	2. https://swayam.gov.in/nd2_arp19_ap83/preview
WEB	3. https://swayam.gov.in/nd1_noc20_ph05/preview
RESOURCES	4. https://www.khanacademy.org/science/physics/special-
	relativity/minkowski-spacetime/v/introduction-to-special-
	relativity-and-minkowski-spacetime-diagrams
1	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.					
	CO2	Appreciate the importance of transformation equations and					
	also the general theory of relativity.						
COURSEO	CO3	Realise the wave nature of matter and understand its					
UTCOMES	importance						
	CO4	Derive Schrodinger equation and also realize the use of					
		operators.					
	CO5	Apply Schrödinger equation to simple problems.					

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	S	S	M	S	M	M	S	M	M	M
CO3	M	M	S	M	S	S	M	S	S	S
CO4	M	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	M	M	S	M	M	S

COURSE	SIXTH SEMESTER – CORE
COURSETITLE	SOLID STATE PHYSICS
CREDITS	4
COURSE	To understand constituents, properties and models of nucleus.
OBJECTIVES	To give reason for radioactivity and study their properties. To learn about the principles of various particle detectors and accelerators. To acquire knowledge on different types of nuclear reactions and their applications. To know the reason for cosmic rays and their effect on the surface of earth and also understand the classification of elementary particles.

UNITS	COURSE DETAILS
	BONDING IN SOLIDS, CRYSTAL STRUCTURE: types of
	bonding –ionic bonding – bond energy of NaCl molecule –covalent
	bonding – metallic bonding – hydrogen bonding – Van-der-Waals
	bonding – crystal lattice – lattice translational vectors – lattice with
	basis – unit cell – Bravais' lattices – Miller indices – procedure for
UNIT-I	finding them –packing of BCC and FCC structures – structures of
	NaCl and diamond crystals –reciprocal lattice – reciprocal lattice
	vectors – properties – reciprocal lattices to SC, BCC and FCC
	structures – Brillouin zones – X-rays – Bragg's law(simple problems)
	– experimental methods: Laue method, powder method and rotating
	crystal method
	ELEMENTARY LATTICE DYNAMICS: lattice vibrations and
	phonons: linear monoatomicanddiatomic chains. acoustical and
	optical phonons –qualitativedescription of the phonon spectrum in
	solids –Dulong and Petit's Law – Einstein and Debye theories
UNIT-II	of specific heat of solids – T ³ law (qualitative only)–properties of
	metals – classical free electron theory of metals(Drude-Lorentz) –
	Ohm's law – electrical and thermal conductivities – Weidemann-
	Franz' law –Sommerfeld'squantum free electron theory (qualitative
	only) – Einstein's theory of specific heat capacity.
	MAGNETIC PROPERTIES OF SOLIDS: permeability,
	susceptibility, relation between them – classification of magnetic
	materials – propertiesofdia, para,ferro, ferri and antiferromagnetism–
	Langevin's theory of diamagnetism – Langevin's theory of
UNIT-III	paramagnetism– Curie-Weiss law – Weiss theory of
	ferromagnetism(qualitative only) – Heisenberg's quantum theory of
	ferromagnetism – domains – discussion of B-H curve –hysteresis
	and energy loss – soft and hard magnets – magnetic alloys.
	DIELECTRIC PROPERTIES OF MATERIALS: polarization
	and electric susceptibility –local electric field of an atom – dielectric
	constant and polarisability – polarization processes: electronic
UNIT-IV	polarization – calculation of polarisability – ionic, orientational and
	space charge polarization –internal field –Clausius-Mosotti relation –
	frequency dependence of dielectric constant –dielectric loss – effect
	of temperature on dielectric constant – dielectric breakdown and its

	trues alossical theory of alostric maloricability, married and
	types – classical theory of electric polarisability –normal and anomalous dispersion – Cauchy and Sellmeir relations –Langevin-
	Debye equation – complex dielectric constant -optical phenomena.
	Application – plasma oscillations – plasma frequency –plasmons,
	FERROELECTRIC and SUPERCONDUCTING PROPERTIES
	OF MATERIALS: ferroelectric effect: Curie-Weiss Law –
	ferroelectric domains, P-E hysteresis loop – <i>elementary band</i>
	theory: Kronig-Penny model – band gap(no derivation) – conductor,
	semiconductor (P and N type) and insulator –conductivity of
UNIT-V	semiconductor – mobility – Hall effect – measurement of
	conductivity (four probe method) - Hall coefficient.
	Superconductivity: experimental results — critical temperature — critical
	magnetic field –Meissner effect –type-I and type-II superconductors
	- London's equation and penetration depth – isotope effect – idea of
	BCS theory (no derivation)
	PROFESSIONAL COMPONENTS: expert lectures – seminars —
UNIT-VI	<u>*</u>
	webinars – industry inputs – social accountability – patriotism
	1. Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003).
	2. Solid state Physics, Rita John,1st edition, TataMcGraw Hill publishers
	(2014).
	3. Solid State Physics, R L Singhal, Kedarnath Ram Nathand Co., Meerut
	(2003)
	4. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006,
	Prentice-Hall of India
	5. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw
TEXT BOOKS	Hill
	6. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976,
	Cengage Learning
	7. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
	8. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson
	India
	9. Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House,
	ND
	 PuriandBabber – Solid State Physics – S.ChandandCo. New Delhi. Kittel - Introduction to solid state physics, Wiley and Sons, 7th
	± 7
	edition.
REFERENCE	3. Raghavan - Materials science and Engineering, PHI
BOOKS	4. Azaroff - Introduction to solids, TMH
200130	5. S. O. Pillai - Solid State Physics, Narosa publication
	6. A.J. Dekker - Solid State Physics, McMillan India Ltd.
	7. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006,
	Prentice-Hall of India
WEB	1. https://nptel.ac.in/courses/115105099/
RESOURCES	2. https://nptel.ac.in/courses/115106061/
ILDUCKCED	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Classify the bonding and crystal structure also learn about the crystal structure analysis using X ray diffraction.		
COLIBERO	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.		
COURSEO UTCOMES	CO3 Give reason for classifying magnetic material on the behaviour.			
	CO4	Comprehend the dielectric behavior of materials.		
	CO5	Appreciate the ferroelectric and super conducting properties of materials.		

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	M	S	S
CO2	M	S	M	S	M	M	S	M	M	M
CO3	S	M	S	M	S	M	M	S	S	S
CO4	S	S	S	S	M	S	S	M	M	M
CO5	S	M	M	S	S	M	S	M	M	S

COURSE	SIXTH SEMESTER – DISCIPLINE SPECIFIC ELECTIVE
COURSETITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085
CREDITS	3
COURSE	To learn all types of number systems, Boolean algebra and identities,
OBJECTIVES	digital circuits for addition and subtraction, flip-flops, registers,
	counters. To get the knowledge on fundamentals of 8085
	architecture, instruction sets and simple programs.

UNITS	COURSE DETAILS
	decimal, binary, octal, hexadecimal numbers systems and their conversions – codes: BCD, gray and excess-3 codes –code
UNIT-I	conversions –complements (1's, 2's, 9's and 10's) –binary addition, binary subtraction using 1's and 2's complement methods – Boolean laws – De-Morgan's theorem –basic logic gates -universal logic gates (NAND and NOR) –standard representation of logic functions (SOP and POS) – minimization techniques (Karnaughmap: 2, 3, 4 variables).
UNIT-II	adders,halfandfull adder –subtractors,halfandfullsubtractor –parallel binary adder – magnitude comparator – multiplexers (4:1) anddemultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3-line-to-8-line), BCD to seven segment decoder.
UNIT-III	flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master-slave flip-flop, truth tables, registers:- serial in serial out and parallel in and parallel out – counters asynchronous:-mod-8, mod-10, synchronous - 4-bit andring counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EEPROM, EAROM. IC – logic families: RTL, DTL, TTL logic, CMOS NAND and NOR Gates, CMOS Inverter, Programmable Logic Devices – Programmable Logic Array (PLA), Programmable Array Logic (PAL).
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 –programmes for addition (8-Bit and 16-Bit), subtraction (8-Bit and 16-Bit), multiplication (8-Bit), division (8-Bit) – largest and smallest number in an array – BCD to ASCII and ASCII to BCD.
UNIT-V	I/O Interfaces: serial communication interface (8251-USART) – programmable peripheral interface (8255-PPI) –programmable interval timers (8253) – keyboard and display (8279), DMA controller (8237).
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars — webinars – industry inputs – social accountability – patriotism

	1. M.Morris Mano, "Digital Design "3rd Edition, PHI, NewDelhi.
	2. Ronald J. Tocci. "Digital Systems-Principles and Applications"
	6/e. PHI. New Delhi. 1999.(UNITS I to IV)
	3. S.Salivahanaand S. Arivazhagan-Digital circuits and design
TEXT BOOKS	4. Microprocessor Architecture, Programming and Applications with
	the 8085 – Penram International Publishing, Mumbai Ramesh
	S.Gaonakar
	5. Microcomputer Systems the 8086/8088 family – YU-Cheng Liu
	and GlenSA
	1. Herbert Taub and Donald Schilling. "Digital Integrated
	Electronics". McGraw Hill. 1985.
	2. S.K. Bose. "Digital Systems". 2/e. New Age International.1992.
REFERENCE	3. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters:
BOOKS	Fundamentals and Applications". TMH.1994.
DOOKS	4. Malvino and Leach. "Digital Principles and Applications". TMG
	HillEdition
	5. Microprocessors and Interfacing – Douglas V.Hall
	6. Microprocessor and Digital Systems – Douglas V.Hall
WEB	1. https://youtu.be/-paFaxtTCkI
RESOURCES	2. https://youtu.be/s1DSZEaCX_g

Ī	Continuous InternalAssessment	End Semester Examination	Total	Grade
ĺ	25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Learn about number systems, Boolean algebra, logical			
	COI	operation and logic gates			
COURSEO	CO2	Understand the working of adder, subractors, multiplexers and			
	COZ	demultiplexers.			
UTCOMES CO3 Get knowledge on flip-flops and storage devices.					
	CO4	Gain inputs on architecture of microprocessor 8085.			
	CO5	Develop program writing skills .on microprocessor 8085.			

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	M	S	S
CO2	M	S	M	S	M	M	S	M	M	M
CO3	S	M	S	M	S	M	M	S	S	S
CO4	S	S	S	S	M	S	S	M	M	M
CO5	S	M	M	S	S	M	S	M	M	S

COURSE	SIXTH SEMESTER – CORE PRACTICAL 6
COURSETITLE	PRACTICAL 6
CREDITS	3
COURSE	To perform basic experiments on characteristics of electronic devices
OBJECTIVES	and then get into the applications such as amplifiers, oscillators,
	counters, multivibrators. Perform fundamental experiments on
	microprocessor 8085 and learn to write programs by themselves.

Electronics

Minimum of Ten Experiments from the list:

- 1. Zener diode voltage regulations
- 2. Bride rectifier using diodes
- 3. Clipping and clamping circuits using diodes.
- 4. Characteristics of a transistor (CE mode)
- 5. Characteristics of a transistor (CB mode).
- 6. RC coupled CE transistor amplifier single stage.
- 7. Transistor Emitter follower.
- 8. Colpitt's oscillator -transistor.
- 9. Hartley oscillator transistor.
- 10. Astablemultivibrator transistor.
- 11. Bistablemultivibrator transistor.
- 12. FET characteristics.
- 13. FET amplifier (common drain)
- 14. UJT -characteristics
- 15. AC circuits with L.C.R -Series resonance.
- 16. AC circuits with L,C,R Parallel resonance.
- 17. Operational amplifier inverting amplifier and summing.
- 18. Operational amplifier non-inverting amplifier and summing.
- 19. Operational amplifier differential amplifier
- 20. Operational amplifier differentiator and integrator.
- 21. Operational amplifier D/A converter by binary resistor method.
- 22. 5V, IC Regulated power supply.
- 23. Construction of seven segment display.
- 24. Study of gate ICs NOT, OR, AND, NOR, NAND, XOR, XNOR
- 25. Verification of De Morgan's theorem using ICs –NOT, OR, AND
- 26. NAND as universal building block.
- 27. NOR as universal building block.
- 28. Half adder / Half subtractor using basic logic gate ICs
- 29. Microprocessor 8085 addition (8 bit only)
- 30. Microprocessor 8085 subtraction (8 bit only)
- 31. Microprocessor 8085 multiplication (8 bit only)
- 32. Microprocessor 8085 division (8 bit only)
- 33. Microprocessor 8085 square (8 bit only)
- 34. Microprocessor 8085 square root (8 bit only)
- 35. Microprocessor 8085 largest/smallest of numbers (8 bit only)
- 36. Microprocessor 8085 –ascending/descending order
- 37. Microprocessor 8085 Fibonacci series

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

ELECTIVE COURSES (EC)

STUDENTS CAN CHOOSE ANY OF THESES SUBJECTS IN SEM V AND VI

COMMUNICATION PHYSICS			
Learning Objective: To get a thorough knoowledge on transmission and reception of			
radio waves, the	radio waves, the different types of communication like fibre optic, radar, satellite,		
cellular			
UNITS	COURSE DETAILS		
	RADIO TRANSMISSION AND RECEPTION: transmitter –		
	modulation types of modulation – amplitude modulation –		
	limitations of amplitude modulation – frequency modulation –		
UNIT-I	comparison of FM and AM – demodulation- essentials in		
	demodulation – receivers: AM radio receivers – types of AM radio		
	receivers – stages of superheterodyne radio receiver, advantages –		
	FM receiver – difference between FM and AM receivers.		
	FIBER OPTIC COMMUNICATION: introduction – basic		
	principle of fiber optics – advantages – construction of optical fiber		
UNIT-II	- classification based on the refractive index profile – classification		
	based on the number of modes of propagation – losses in optical		
	fibers – attenuation–advantages of fiberoptic communication		
	RADAR COMMUNICATION: introduction - basic radar system		
	-radar range – antenna scanning –pulsed radar system – search		
UNIT-III	radar –tracking radar – moving target indicator Doppler effect-MTI		
	principle – CW Doppler radar		
	SATELLITE COMMUNICATION: introduction history of		
	satellites – satellite communication system – satellite orbits – basic		
UNIT-IV	components of satellite communication system – commonly used		
	frequency in satellite – communication –multiple access		
	communication – satellite communication in India		
	MOBILE COMMUNICATION: introduction – concept of cell –		
	basic cellular mobile radio system – cellphone – facsimile –		
UNIT-V	important features of fax machine – application of facsimile –		
	VSAT (very small aperture terminals) modem IPTV (internet		
	protocol television) -Wi-Fi-4G (basic ideas)		
	1. V.K.Metha, Principles of Electronics, S. Chand and CoLtd., 2013		
TEXT BOOKS	2. Anokh Singh and Chopra A.K., Principles of communication		
	Engineering, S.Chandand Co, 2013		
	1. J.S. Chitode, Digital Communications, 2020, Unicorn		
REFERENCE	publications		
BOOKS	2. Senior John. M, Optical Fiber Communications: Principles and		
200110	Practice, 2009, Pearson Education.		
	1 ractice, 2007, I carson Education.		

Continuous InternalAssessment		End Semester Examination	Total	Grade
	25	75	100	

ENERGY PHYSICS		
Learning Objective: To get the understanding of the conventional and non-		
	gy sources, their conservation and storage systems.	
UNITS		
UNIT-I	as a measure of prosperity – world energy future – energy sources and their availability – conventional energy sources – non-conventional and renewable energy sources – comparison – merits and demerits.	
UNIT-II	SOLAR ENERGY: solar energy Introduction – solar constant – solar radiation at the Earth's surface – solar radiation geometry – Solar radiation measurements – solar radiation data –solar energy storage and storage systems – solar pond – solar cooker – solar water heater – solar greenhouse – types of greenhouses – solar cells.	
UNIT-III	WIND ENERGY:introduction –nature of the wind – basic principle of wind energy conversion – wind energy data and energy estimation – basic components of Wind Energy Conversion Systems (WECS) – advantages and disadvantages of WECS – applications – tidal energy	
UNIT-IV	BIOMASS ENERGY: introduction – classification – biomass conversion technologies –photosynthesis – fermentation - biogas generation –classification of biogas plants – anaerobic digestion for biogas – wood gasification – advantages and disadvantages.	
UNIT-V	ENERGY STORAGE: importance of energy storage- batteries - lead acid battery -nickel-cadmium battery - fuel cells - types of fuel cells - advantages and disadvantages of fuel cells - applications of fuel cells - hydrogen storage.	
TEXT BOOKS	G.D.Rai, Non-Conventional Sources of Energy, Khanna Publishers, 2009, 4 th Edn. S.P.Sukhstme, J.K.Nayak, Solar Energy, Principles of Thermal	
REFERENCE BOOKS	 John Twidelland Tony Weir, Renewable Energy Resources, Taylor and Francis, 2005, 2ndEdn. S.A. Abbasi and NasemaAbbasi, Renewable Energy sources and their environmental impact, PHI Learning Pvt. Ltd, 2008. M. P. Agarwal, Solar Energy, S. Chand and Co. Ltd., New Delhi,1982 H. C. Jain, Non-Conventional Sources of Energy, Sterling Publishers,1986. 	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

MATHEMATICAL PHYSICS

solve problems in UNITS	Physics and similar situations COURSE DETAILS
UNIT-I	MATRICES: types of matrices – symmetric, Hermitian, unitary and orthogonal matrices – characteristic equation of a matrix – Eigen values and Eigen vectors of a matrix – Cayley-Hamilton theorem – inverse of matrix by Cayley-Hamilton theorem – similarity transformations – diagonalization of 2x2 real symmetric matrices.
UNIT-II	VECTOR CALCULUS: vector differentiation – directional derivatives –definitions and Physical significance of gradient, divergence, curl – Laplace operators– vector identities – line, surface and volume integrals – statement, proof and simple problems for Gauss's divergence theorem, Stoke's theorem, Green's theorem.
UNIT-III	ORTHOGONAL CURVILINEAR COORDINATES: tangent basis vectors – scale factors – unit vectors in cylindrical and spherical coordinate systems –gradient of a scalar –divergence and curl of a vector –Laplacian in these coordinate systems.
UNIT-IV	FOURIER SERIES: periodic functions – Dirichlet's conditions – general Fourier series – even and odd functions and their Fourier expansions – Fourier cosine and sine – half range series – change of length of interval. Fourier analysis of square wave, saw-tooth wave, half wave/full wave rectifier wave forms. FOURIER TRANSFORMS: Fourier Integral theorem(Statement only)–Fourier, Fourier sine and Fourier cosine transforms, – Fourier transform of single pulse – trigonometric, exponential and Gaussian functions – inverse Fourier transform – convolution theorem.
UNIT-V	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (PDE): PDE for transverse vibrations in elastic strings (one dimensional wave equation) —one dimensional heat flow equation — solutions to these PDE's by method of separation of variables — problems based on boundary conditions and initial conditions.
TEXT BOOKS	 Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India. Mathematical Physics – P. K. Chattopadhyay, New Age International Publishers. Mathematical Physics – B. D. Gupta. Mathematical Physics – H. K. Das, S. Chand and Co, New Delhi.
REFERENCE BOOKS	 Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill. Engineering Mathematics III- B, M. K. Venkataraman, Applied Mathematics for Scientists and Engineers, Bruce R. Kusseand Erik A. Westwig, 2nd Ed, WILEY-VCH Verlag, 2006. Vector space and Matrices – J. C. Jain, Narosa Publishing House Pvt. Ltd.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

ADVANCED MATHEMATICAL PHYSICS	

Learning Objective: The fundamentals of matrices and vector calculus learnt in earlier course will enable students to learn advanced topics and theorems. The special functions and applications of partial differential equations will be of use in research at a later stage. **UNITS COURSE DETAILS MATRICES:** introduction – special types of matrices – transpose – conjugate – conjugate transpose – symmetric andanti symmetric – Hermitian and skew Hermitian – orthogonal and unitary – properties **UNIT-I** - characteristic equation - roots and characteristic vectors diagonalization- Cayley-Hamilton theorem -simple problems **VECTOR CALCULUS:** Voperator – divergence – second derivative of vector functions or fields –Laplacian operator – curl of a vector – line integral – line Integral of a vector field around an infinitesimal **UNIT-II** rectangle – curl of conservative field – surface integral – volume integral (without problem) - Gauss's divergence theorem and proof -Stroke's theorem and proof –simple problems. **SPECIAL FUNCTIONS:** definition –Beta function – Gamma function – evaluation of Beta function – other forms of Beta function - evaluation of Gamma function - other forms of Gamma function -**UNIT-III** relation between Beta and Gamma functions – simple problems. FROBENIUS METHOD AND SPECIAL FUNCTIONS: singular points of second order linear differential equations and importance –singularities of Bessels and Laguerre equations, Frobenius method and applications to differential **UNIT-IV** equations: Legendre and Hermitedifferential equations – Legendre and Hermitepolynomials – Rodrigues formula –generating function – orthogonality PARTIAL DIFFERENTIAL EQUATIONS: solutions to partial differential equations using separation of variables - Laplace's equation in problems of rectangular – cylindrical and spherical **UNIT-V** symmetry – conducting and dielectric sphere in an external uniform electric field – wave equation and its solution for vibrational modes of a stretched string 1. Mathematical Physics, B.D. Gupta-Vikas Publishing House, 4 th **TEXT BOOKS Edition** (2006) 2. Mathematical Physics, SatyaPrakash (Sultan Chand) 1. Mathematical MethodsorPhysicists, G.B. Arfken, H.J. Weber, F.E. Harris (2013, 7th Edn., Elsevier) 2. Mathematical Physics-H. K. Dass, Dr. Rama Verma (S. Chand REFERENCE Publishing) **BOOKS** 3. Advanced Engineering Mathematics, Erwin Kreyszig (Wiley India) 4. Mathematical Physics and Special Relativity, M. Das, P.K. Jena and B.K. Dash (SrikrishnaPrakashan)

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

NUMERICAL METHODS AND C PROGRAMMING		
Learning Objective: To understand the methods in numerical differentiation are		
integration andtodevelop the problem solving skills of the student. To introduce		
explain the basic structure, rules of compiling and execution of C programming.		
UNITS	COURSE DETAILS	
	NUMERICAL SOLUTIONS: determination of zeros of polynomials	
UNIT-I	– roots of linear and nonlinear algebraic and transcendental equations –	
	bisection and Newton-Raphson methods – convergence and divergence	
	of solutions	
	NUMERICAL DIFFERENTIATION, INTEGRATION AND	
	CURVE FITTING: Newton's forward and backward interpolation –	
UNIT-II	Lagrange's interpolation – Newton-Raphson method to find square	
	root and cube roots – principle of least squares – fitting a straight line	
	and exponential curve – trapezoidal rule – Simpson's 1/3 and 1/8 rule	
	ALGORITHM, FLOW CHART AND PROGRAM: development	
	of algorithm – flow chart for solving simple problems– average of set	
UNIT-III	of numbers – greatest, smallest – conversion of Fahrenheit to Celsius	
	and Celsius to Kelvin, miles to kilometer – sorting set of numbers in	
	ascending and descending order – square matrix, addition, subtraction	
	and multiplication of order (2x2) using arrays.	
	INTRODUCTION TO C: importance of C – basic structure of C	
* 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	programming – constants, variables and data types – character set, key	
UNIT-IV	words and identifiers – declaration of variables and data types –	
	operators – expressions: arithmetic, relational, logical, assignment –	
	increment and decrement – conditional – comma operators	
	CONTROL STRUCTURE: decision making with if, if-else, nested if	
UNIT-V	- switch -go to - break - continue -while, do while, for statements -	
	arrays, one dimensional and two dimensional – declaring arrays –	
	storing arrays in memory –initializing arrays – simple programs	
	1. Numerical methods, Singaravelu, Meenakshipublication, 4 th Edn.,	
	1999.	
	2. Numerical methodsP.Kandasamy, K.Thilagavathy, K. Gunavathi,	
TEXT BOOKS	S.Chand, 2016	
TEXT BOOKS	3. Programming in C, Balagurusamy, TMG, ND, 2012	
	4. Numerical Analysis,,M.K.Venkatraman, NPH, 2013	
	5. Numerical Analysis, B.D.Gupta, Konark Publishers, New Delhi,	
	2013	
DEDEDENICE	1. Schaum's outline series, Theory and Problems of programming in	
REFERENCE	C, C.Byronand S. Gottfried, Tata McGraw Hill 2003	
BOOKS	3. Numerical methods and C Programming, Veerarajan, 2015.	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

MATERIALS SCIENCE			
Learning Objective: To learn imperfections in crystals, deformation of materials and			
testing of materials. To get knowledge on behavior of a material, under the action of light			
and their applicat	and their applications. To know the applications of crystal defects.		
UNITS	COURSE DETAILS		
	CRYSTAL IMPERFECTIONS: introduction – point defects:		
	vacancies(problems), interstitials, impurities, electronic defects -		
	equilibrium concentration of point imperfections (problems)-		
UNIT-I	application of point defects –line defects: edge dislocation(problems),		
	screw dislocation – surface defects: extrinsic defects – intrinsic		
	defects: grain boundaries, tilt andtwistboundaries, twin boundaries,		
	stacking faults – volume defects – effect of imperfections.		
	MATERIAL DEFORMATION: introduction – elastic behavior of		
	materials – atomic model of elastic behavior –modulus as a parameter		
UNIT-II	in design – rubber like elasticity – inelastic behavior of materials –		
	relaxation process – viscoelastic behavior of materials – spring-Dash		
	pot models of viscoelastic behavior of materials.		
	PERMANENT DEFORMATION AND STRENGTHENING		
	METHODS OF MATERIALS: introduction –plastic deformation:		
UNIT-III	tensile stress-strain curve – plastic deformation by slip – creep:		
	mechanism of creep – creep resistant materials – strengthening		
	methods: strain hardening, grain refinement – solid solution strengthening – precipitation strengthening.		
	OPTICAL MATERIALS: introduction – optical absorption in		
	metals, semiconductors and insulators – NLO materials and their		
UNIT-IV	applications – display devices and display materials: fluorescence and		
	phosphorescence – light emitting diodes –liquid crystal displays.		
	MECHANICAL TESTING: destructive testing: tensile		
	test, compression test, hardness test – nondestructive testing (NDT):		
UNIT-V	radiographic methods, ultrasonic methods – thermal methods of NDT:		
	thermography – equipment used for NDT: metallurgical microscope		
	1. Material science and Engineering, Raghavan V, Prentice Hall of		
TEXT BOOKS	India, Sixth Edition, 2015		
	2. Materials science, V. Rajendran, McGraw Hill publications 2011		
	1. William D. Callister, Jr., Material Science and Engineering – An		
	Introduction, 8th Edition, John Wiley and Sons, Inc., 2007		
	2. W. Bolton, "Engineering materials technology", 3rd Edition,		
	Butterworth and Heinemann, 2001.		
REFERENCE	3. Donald R. Askeland, Pradeep P. Phule, "The Science and Engineering		
BOOKS	of Materials", 5th Edition, Thomson Learning, First Indian Reprint,		
	2007.		
	8. William F. Smith, "Structure and Properties of Engineering Alloys",		
	Mc-Graw-Hill Inc., U.S.A, 2nd edition, 1993.		

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

LASERSANDFIBEROPTICS				
Learning Objective: The students will learn the fundamentals, types of lasers, laser				
instrumentation and their applications also the interconnectbetweenoptics with lasers.				
UNITS	COURSE DETAILS			
UNIT-I	FUNDAMENTALSOFLASER: basic principles: spontaneous and stimulated emission – Einstein'scoefficient – pumping mechanism: optical, electrical and laser pumping – population inversion – two and three level laser system – resonatorconfiguration – quality factor – threshold condition – concept of Qswitching–Theoryofmodelocking–cavitydumping.			
	TYPESOFLASER: solidstatelaser:rubylaser,			
UNIT-II	Nd:YAGlaser,Nd:Glasslaser—semiconductor laser: intrinsic semiconductor laser, doped semiconductorlaser, injection laser—dye laser—chemical laser: HCL laser, DF- CO ₂ , COchemicallaser. Gaslaser:neutral atom gas laser (He-Ne laser), CO ₂ laser, Copper vapour laser.			
UNIT-III	APPLICATIONSOFLASER: application of laser in metrology optical communication – material processing: laser instrumentation of			
UNIT-IV FIBEROPTICS: basic components of optical fiber communication principles of lightpropagation through fiber – total internal reflection optical fiber – coherent bundle – numerical aperture and skew more phase shift and attenuation during total internal reflection – types fiber: single mode and multi-mode fiber – step index and graded in fiber – fiber optic sensors –application of fiber optics.				
UNIT-V	CHARACTERISTICSANDFABRICATIONOFOPTICALFIBER: fiber characteristics: mechanical and transmission characteristics – absorption loss and scattering loss measurements – dispersion – connectorsandsplicers – fiber termination – optical time domain reflectometer(OTDR) and its uses – fiber material – fiber fabrication – fiber optic cablesdesign.			
TEXT BOOKS	 B.B. Laud - Laser and Non-linear Optics, New Age International Publications Third Edition, New Delhi. An Introduction to laser, theory and applications by Avadhunulu, M.N.S., Chand and Co, New Delhi J. Wilson and J.F.B. Hawkes. 'Introduction to Opto Electronics', Pearson Education, 2018. 			
REFERENCE BOOKS	 A.Sennaroglu, "PhotonicsandLaserEngineering:Principles,Devicesand Applications" McGraw-HillEducation,2010. K.R.Nambiar, "Lasers: Principles, Typesand Applications", New Age International, 2004. Optic, AjoyGhatak, McGraw-Hill Education (India) Pvt, Ltd, 6th Edn., 2017. 			

|--|

DIGITAL PHOTOGRAPHY			
Learning Objective: To understand the principles of photography and image formation			
and the science and arts behind it. To understand the essential components			
ofconventionalan	d digital cameras and also the different image processing techniques.		
UNITS	COURSE DETAILS		
	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE		
	FORMATION: principle –chemical route and digital route –light,		
TINITE T	wavelengths, colours – shadows – light intensity and distance –		
UNIT-I	making light form images –pin-hole images – practical limitations to		
	pin-hole images – lens instead of pin-hole – focal length and image		
	size – imaging of closer subjects.		
	LENSES – CONTROLLING THE IMAGES: photographic lens –		
	focal length and angle of view (problems) – focusing movement –		
UNIT-II	aperture and f-numbers (<i>problems</i>) – depth of field– depth of focus –		
	image stabilization – lenses for digital cameras – lens and camera care		
	CAMERA USING FILMS AND ITS TYPES: camera and its		
	essential components— shutter — aperture — light measurement — film		
UNIT-III	housing – camera types: view camera– view finder camera – Reflex		
	7.5		
	camera—single lens reflex (SLR) camera DICITAL CAMERAS PRINCIPLE AND TYPES principle of		
	DIGITAL CAMERAS PRINCIPLE AND TYPES: principle of		
	digital image capturing –comparison of digital and analog picture		
LINIUT IX	information – megapixel – grain, noise and pixel density – optical and		
UNIT-IV	digital zooming – image stabilizer – bit depth – white balance – colour		
	modes – file formats (TIFF, RAW and JPEG) – storage cards and		
	types – digital cameras: camera phones – compact camera – hybrid		
	camera – digital SLR.		
	THE DIGITAL IMAGE – POSTPRODUCTION: hardware:		
	computer and its peripherals – software: saving digital file – basic		
	editing: navigating the image – undo/redo/history – crop – rotate –		
UNIT-V	brightness and contrast — colour balance — hue/saturation — dodge/burn		
	- cloning andretouching - removing an element in an image -		
	advanced editing: histogram/levels – curves – selection tools: magic		
	wand – printing digital images: inkjet printer – laser printer – dye sub		
	printer – lambda/light jet printers.		
	1. Michel J.Langford, Anna Fox and Richard Sawdon Smith, Basic		
TEXT BOOKS	photography, 9 th Edition, , 2010-NL, Focal press, London		
ILMI BOOKS	2. Henry Carroll, Read this if you want to take great photographs of		
	people, Laurence King Publishing		
	1. Mark Galer, Digital Photography in Available Light essential		
REFERENCE	skills, 2006, Focal press, London		
BOOKS	2. Paul Harcourt Davies, The Photographer's practical handbook,		
	2005, UK PRESS		
1			

Continuous InternalAssessment	End Semester Examination	Total	Grade	
-------------------------------	---------------------------------	-------	-------	--

25	75	100	
25	75	100	

NANOSCIENCE AND NANO TECHNOLOGY			
Learning Objective: This course aims to provide an overall understanding of			
Nanoscience and	Nanotechnology and introduces different types of nanomaterials, their		
properties, fabrica	ation methods, characterization techniques and a range of applications.		
UNITS	COURSE DETAILS		
	NANOSCIENCE AND NANOTECHNOLOGY: nanoscale- nature		
	and nanostructures – nanostructures: 0D, 1D,2D– surface to volume		
UNIT-I	ratio- size effect -excitons- quantum confinement- metal based		
	nanoparticles (metal and metal oxide) – nanocomposites (non-polymer		
	based) – carbon nanostructures – fullerene –SWCNT and MWCNT		
	PROPERTIES OF NANOMATERIALS:introduction-mechanical		
	behavior –elastic properties – hardness and strength – ductility and		
	toughness –superplastic behavior – optical properties – surface		
UNIT-II	plasmon resonance – electrical properties – dielectric materials and		
	properties – magnetic properties – super paramagnetism –		
	electrochemical properties – properties of CNTs.		
	FABRICATION METHODS AND VACUUM TECHNIQUES:top-		
	down and bottom-up approaches – electrochemical method – chemical		
	and physical vapour depositions (CVD and PVD) – plasma arc		
UNIT-III	discharge – sputtering – thermal evaporation – pulsed laser deposition		
	- ball milling – lithography: photolithography – e-beam lithography –		
	sol-gel methods – synthesis of CNT.		
	CHARACTERIZATION TECHNIQUES: scanning probe		
	microscopy – scanning tunneling microscopy – atomic force		
UNIT-IV	microscopy – scanning electron microscopy – transmission electron		
	microscopy –powder XRD method: determination of structure and		
	grain size analysis – UV-visible and photoluminescence spectroscopy.		
	APPLICATIONS OF NANOMATERIALS: medicine: drug delivery		
	– photodynamic therapy – molecular motors –energy: fuel cells –		
	rechargeable batteries – supercapacitors– photovoltaics. sensors:		
UNIT-V	nanosensors based on optical and physical properties – electrochemical		
	sensors – nanobiosensors. nanoelectronics: CNTFET – display screens		
	- GMR read/write heads – nanorobots –applications of CNTs		
	1. K.K.Chattopadhyay and A.N.Banerjee, (2012), Introduction to		
	Nanoscience and Nanotechnology, PHI Learning Pvt. Ltd.,		
TEXT BOOKS	2. M.A. Shah, Tokeer Ahmad (2010), <u>Principles of Nanoscience and</u>		
	Nanotechnology, Narosa Publishing House Pvt Ltd.		
	3. Mick Wilson, et al (2005) Nanotechnology, Overseas Press.		
	1. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley		
	Publishing Inc. USA		
REFERENCE	2. J.H.Fendler (2007) Nano particles and nano structured films;		
BOOKS	Preparation, Characterization and Applications, John Wiley and Sons		
	3. B.S.Murty, et al (2012) Textbook of Nanoscience and		
	Nanotechnology, Universities Press.		

Continuous InternalAssessment	End Semester Examination	Total	Grade

25	75	100	
25	75	100	

MEDICAL INSTRUMENTATION				
Learning Objective: This course aims to provide background of the Physics principles				
inmedical instrumentation technologies through theoretical and practical learning.				
UNITS	COURSE DETAILS			
	BIOMETRICS:introduction to man-instrument system and its			
	components – problems encountered in measuring living systems –			
TINITED T	transducers– force, motion, pressure transducers.			
UNIT-I	AUDIOMETRY: mechanism of hearing – air and bone conduction –			
	threshold of hearing – audiometer – masking in audiometry – pure tone			
	and speech audiometer – evoked response audiometry – hearing aids			
	BIOELECTRIC POTENTIALS AND ELECTRODES: biomedical			
	signals - sources of bioelectric potentials - resting, action and			
	propagation of bioelectric potentials -bio-potential electrodes - skin			
UNIT-II	surface, needle electrodes.			
	BIOMEDICAL RECORDERS: electro-conduction system of heart –			
	electro cardiogram (ECG) – Einthoven's triangle — electro			
	encephalogram (EEG) -brain waves - EEG instrumentation - recording			
	of evoked potentials – electro myogram (EMG)–pulse oximeter.			
	DIAGNOSTIC RADIOLOGY: radiography – primary radiological			
	image – contrast agents, filters – beam restrictor, grid – image quality			
	COMPUTED TOMOGRAPHY: linear tomography – computed			
UNIT-III	tomography – helical and multi slice – image quality– radiation dose.			
	RADIOISOTOPES AND NUCLEAR MEDICINE: radioisotopes –			
	radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.			
	ULTRASOUND IMAGING: ultrasound transducer – ultrasound			
	imaging—Doppler ultrasound—ultrasound image quality and bio-effects.			
UNIT-IV	MAGNETIC RESONANCE IMAGING: protonand external magnetic			
	field – precession – radiofrequency and resonance – MRI signal –			
	relaxation time – MRI instrumentation – imaging sequences – biosafety			
	PROJECT ASSIGNMENT: clinical practice of <i>one</i> of the following:			
* IN ITEM * 7	electro cardiogram, electro encephalogram, electro myogram, electro			
UNIT-V	oculogram, computed tomography, positron emission tomography,			
	ultrasound			
	1. Leslie Cromwell, Fred Weibell, Erich Pfieffer (2002) Biomedical			
	Instrumentation and Measurements Prentice Hall of India, New Delhi.			
TEXT BOOKS	2. R. S. Khandpur (2003) Handbook of Biomedical Instrumentation			
TEXT DOORS	2 nd Edn. Tata McGraw Hill, New Delhi.			
	3. KuppusamyThayalan (2017), Basic Radiological Physics 2 nd Edn.			
	Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.			
	1. John Webster (2004) Bioinstrumentation John Wiley and Sons,			
DEDEDENGE	Singapore.			
REFERENCE	2. John Enderle, Susan Blanchard, Joseph Bronzino (2005) Introduction			
BOOKS	to Biomedical Engineering, 2 nd ed. Elsevier, San Deigo			
	3. William Hendee, Geoffrey Ibbott, Eric Hendee (2005) Radiation			
	therapy Physics 3 rd ed. Wiley-Liss, New Jersey			

Continuous InternalAssessment	End Semester Examination	Total	Grade	
-------------------------------	--------------------------	-------	-------	--

25	75	100	

NON MAJOR ELECTIVES (NME)

PHYSICS FOR EVERYDAY LIFE			
Learning Objective: To know where all physics principles have been put to use in daily			
life and appreciate the concepts with a better understanding also to know about Indian			
scientists who have	ve made significant contributions to Physics		
UNITS	COURSE DETAILS		
UNIT-I	MECHANICAL OBJECTS: spring scales – bouncing balls –roller		
UNII-I	coasters – bicycles –rockets and space travel.		
	OPTICAL INSTRUMENTS AND LASER: vision corrective lenses		
UNIT-II	– polaroid glasses – UV protective glass – polaroid camera – colour		
	photography – holography and laser.		
	PHYSICS OF HOME APPLIANCES: bulb – fan – hair drier –		
UNIT-III	television – air conditioners – microwave ovens – vacuum cleaners		
	SOLAR ENERGY: Solar constant – General applications of solar		
UNIT-IV	energy – Solar water heaters – Solar Photo – voltaic cells – General		
	applications of solar cells.		
	INDIAN PHYSICIST AND THEIR		
	CONTRIBUTIONS: C.V.Raman, HomiJehangirBhabha, Vikram		
UNIT-V	Sarabhai, Subrahmanyan Chandrasekhar, VenkatramanRamakrishnan,		
	Dr. APJ Abdul Kalam and their contribution to science and		
	technology.		
	1. The Physics in our Daily Lives, UmmeAmmara,		
TEXT BOOKS	GugucoolPublishing, Hyderabad, 2019.		
	2. For the love of physics, Walter Lawin, Free Press, New York, 2011.		

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

ASTROPHYSICS		
Learning Objective: This course intends to introduce principles of astrophysics de		
the science of fo	rmation and evolution of stars and interpretation of various heavenly	
phenomena and p	provide an understanding of the physical nature of celestialbodies along	
with the instrumen	ntation and techniques used in astronomical research	
UNITS	COURSE DETAILS	
	TELESCOPES: Optical telescopes – magnifying power, brightness,	
UNIT-I	resolving power and f/a ratio – types of reflecting and refracting	
UNII-I	telescopes – detectors and image processing – radio telescopes –	
	Hubble space telescope.	
	SOLAR SYSTEM:Bode's law of planetary distances – meteors,	
UNIT-II	meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection of	
	gravitational waves – recent advances in astrophysics.	
	ECLIPSES: types of eclipses – solar eclipse – total and partial solar	
UNIT-III	eclipse – lunar eclipse – total and partial lunar eclipse – transits.	
UN11-111	THE SUN: physical and orbital data – solar atmosphere – photosphere	

– chromosphere – solar corona – prominences – sunspots – 11yea			
solar cycle – solar flares.			
STELLAR EVOLUTION: H-R diagram – birth and death of low			
mass, intermediate mass and massive stars - Chandrasekar limit -			
white dwarfs – neutron stars – pulsars – black holes – supernovae.			
GALAXIES: classification of galaxies – galaxy clusters –interactions			
of galaxies, dark matter and super clusters – evolving universe.			
ACTIVITIES IN ASTROPHYSICS:			
(i) Basic construction of telescope			
(ii) Develop models to demonstrate eclipses/planetary motion			
(iii) Night sky observation			
(iv) Conduct case study pertaining to any topic in this paper			
(v) Visit to any one of the National Observatories			
Any three activities to be done compulsorily.			
1. BaidyanathBasu, (2001). An introduction to Astrophysics, Second			
printing, Prentice – Hall of India (P) Ltd, New Delhi			
2. K.S.Krishnaswamy, (2002), Astrophysics – a modern perspective,			
New Age International (P) Ltd, New Delhi.			
3. Shylaja, B.S. andMadhusudan, H.R., (1999), Eclipse: A Celestial			
Shadow Play, Orient BlackSwan,			
_			

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

PHYSICS OF MEDICAL INSTRUMENTS				
Learning Object	Learning Objective: The students will be exposed to instruments like ECG,EEG,EM			
medical imaging, diagnostic specialties, operation theater and its safety which will				
	ize in instrument servicing.			
UNITS	COURSE DETAILS			
	BIO-POTENTIALS AND ELECTRODES: transport of ions through			
	cell membrane- resting and action potential - Characteristics of resting			
UNIT-I	potential – bio-electric potential – design of medical instruments –			
0111-1	components of bio-medical instrumentation – electrodes – electrode			
	potential – metal microelectrode – depth and needle electrodes – types			
	of surface electrode – the pH electrode.			
	Bio-potential based Instrumentation: Electrocardiography (ECG) –			
	origin of cardiac action potential - ECG lead configuration -block			
UNIT-II	diagram of ECG recording set up (qualitative) -			
01411-11	Electroencephalography (EEG) – origin of EEG – action and evoked			
	potentials - brain waves - block diagram of modern EEG set up -			
	electromyography (EMG) – block diagram of EMG recording setup.			
	OPERATION THEATRE AND SAFETY: diathermy – block			
	diagram of the electrosurgical diathermy- shortwave, microwave,			
UNIT-III	ultrasonic diathermy – ventilators – servo controlled systems –			
01411-111	RADIATION SAFETY: units of radiation - pocket dosimeter -			
	pocket type radiation alarm – thermo-luminescence dosimeter.			

UNIT-IV	MEDICAL IMAGING: nuclear imaging technique –computer tomography (CT) – principle – mathematical basis of image construction –block diagram of CT scanner – ultrasonic imaging systems – construction of transducer – display modes – MRI principle and instrumentation.		
UNIT-V	DIAGNOSTICS AND SPECIALITIES: X-rays in radiography fluoroscopy — comparison— image intensifiers — angiography applications of X-ray examination (<i>problems</i>). LASER IN MEDICINE: laser interactions with biomolecules advantages of laser surgery — endoscopy — types of endoscopes w their operation (qualitative).		
TEXT BOOKS	 Biomedical Instrumentation and measurement, Leslie Cromwell, PHI, 2015 Medical Instrumentation, M. Arumugam, Anuradha agencies, 1992 Medical Electronics, M.J.Kumar Doss, Prathibha Publishers, 1987 Medical Physics, John R. Cameron and James G. Skofronick, Thrift books, Atlanta, 1985 Electronic Instruments and Instrumentation Technology, M. M.M.Anand, PHI, 2015 		

Ī	Continuous InternalAssessment	End Semester Examination	Total	Grade
ĺ	25	75	100	

HOME ELECTRICAL INSTALLATION					
Learning Objective: The students will get knowledge on electrical instruments					
installations and o	installations and domestic wiring techniques with safety precautions and servicing.				
UNITS	COURSE DETAILS				
UNIT-I	SIMPLE ELECTRICAL CIRCUITS: charge, current, potential difference, resistance – simple electrical circuits – DC ammeter, voltmeter, ohmmeter – Ohm's law – difference between DC and AC – advantages of AC over DC – electromagnetic induction - transformers – inductors/chokes – capacitors/condensers – impedance – AC ammeter, voltmeter –symbols and nomenclature TRANSMISSION OF ELECTRICITY: production and transmission of electricity – concept of power grid – Series and parallel connections – technicalities of junctions and loops in circuits –transmission losses (qualitative) – roles of step-up and step-down transformers – quality of connecting wires – characteristicsof single and multicore wires				
UNIT-II					
	ELECTRICAL WIRING: different types of switches – installation of two way switch – role of sockets, plugs, sockets - installation of meters – basic switch board – electrical bell – indicator – fixing of tube lights				
UNIT-III	and fans – heavy equipment like AC, fridge, washing machine, oven, geyser, jet pumps – provisions for inverter – gauge specifications of wires for various needs				
UNIT-IV	POWER RATING AND POWER DELIVERED: conversion of electrical energy in to different forms – work done by electrical energy				

	- power rating of electrical appliances - energy consumption -
	electrical energy unit in kWh – calculation of EB bill – Joule's heating
	– useful energy and energy loss – single and three phase connections –
	Measures to save electrical energy – energy audit
	SAFETY MEASURES: insulation for wires – colour specification for
	mains, return and earth – Understanding of fuse and circuit breakers –
UNIT-V	types of fuse: kit-kat, HRC, cartridge, MCB, ELCB – purpose of earth
UNII-V	line – lighting arrestors – short circuiting and over loading – electrical
	safety – tips to avoid electrical shock – first aid for electrical shock –
	fire safety for electric current
	1. Wiring a House: 5th Edition by Rex Cauldwell, (2014).
	2. Black and Decker Advanced Home Wiring, 5th Edition: Backup
TEXT BOOKS	Power - Panel Upgrades - AFCI Protection - "Smart" Thermostats,
1EAI DOORS	by Editors of Cool Springs Press, (2018).
	3. Complete Beginners Guide to Rough in Electrical Wiring: by Kevin
	Ryan (2022).

Continuous InternalAssessment	End Semester Examination	Total	Grade	l
25	75	100		l

	PHYSICS OF MUSIC				
Learning Objective: To apprise and train students on the role of Physics in music and get					
the knowledge on the musical notes and instruments.					
UNITS	COURSE DETAILS				
UNIT-I	SCIENTIFIC STUDY OF MUSIC: vibrations of atoms of matter–vibrations coupling to air – propagation of sound waves in air, other media, fluids and solids – velocity, frequency, wavelength, time period, intensity: definition and unit fs – classification of sound on frequency and velocity– human and animal sound perception–mechanism of ear and hearing – psychoacoustics				
UNIT-II	SIMPLE VIBRATING SYSTEMS: simple harmonic motion – tuning fork— amplitude, phase, energy,energy loss/damping/ dissipation – power – travelling waves and standing waves— laws of vibration in stretched strings— one-dimensional medium — open and closed organ pipes — over tones, harmonics — quality of sound: pitch, timber, loudness — octaves, musical notes				
UNIT-III	MUSICAL TONE: pure/simple tones — sine/cosine waves— well-defined frequencies, wavelengths, amplitudes and phases— partial tones — assembly of pure tones— mix of different frequencies and amplitudes— complex tone — superposition of simple tones — complex waveform— periodic complex waveform— formants— resonances— sound envelope				
UNIT-IV	PRODUCTION OF MUSICAL SOUNDS: human voice, mechanism of vocal sound production – larynx (sound box) – <i>stringed Instruments</i> : plucked and bowed, guitar, mandolin, violin, piano, etc. – <i>wind instruments</i> : whistles, flute, saxophone, pipe organ, bagpipes, etc–				

	percussion instruments: plates, membranes, drums, cymbals, xylophone etc. — electronic instruments: keyboards, electric guitars, rhythm pads, etc. — analog and digital sound synthesizers,—MIDI instrument—computer generated music
UNIT-V	RECORDING OF MUSIC and SOUND: Edison phonograph – cylinder and disk records – magnetic wire and tape recorders – digital recording (e.g. to CD, DVD, etc.)– analog transducers, condenser, dynamic microphones, loudspeaker – complex sound fields – near and far fields of acoustic– spectral analysis techniques – continuous and discrete Fourier transforms, digital signal processing – digital filtering – specifications of recording studios
TEXT BOOKS	 Physics and Music: The Science of Musical Sound by Harvey White (2014) Good Vibrations – The Physics of Music by Barry Parker, (2009) The History of Musical Instruments by Curt Sachs, (2006) Physics and Music: Essential Connections and Illuminating Excursions by Kinko Tsuji and Stefan C. Müller (2021)

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS – I
CREDITS	3
COURSE	To impart basicprinciples of Physics that which would be helpful for
OBJECTIVES	students who have taken programmes other than Physics.

UNITS	COURSE DETAILS
	WAVES, OSCILLATIONS AND ULTRASONICS: simple
	harmonic motion (SHM) – composition of two SHMs at right angles
	(periods in the ratio 1:1) - Lissajous figures - uses - laws of
	transverse vibrations of strings – determination of AC frequency
UNIT-I	using sonometer (steel and brass wires) – ultrasound – production –
	piezoelectric method – application of ultrasonics: medical field –
	lithotripsy, ultrasonography –ultrasonoimaging- ultrasonics in
	dentistry - physiotheraphy, opthalmology - advantages of
	noninvasive surgery – ultrasonics in green chemistry.
	PROPERTIES OF MATTER: <i>Elasticity</i> : elastic constants – bending
	of beam – theory of non- uniform bending – determination of Young's
	modulus by non-uniform bending – energy stored in a stretched wire –
	torsion of a wire – determination of rigidity modulus by torsional
	pendulum
UNIT-II	Viscosity: streamline and turbulent motion – critical velocity –
	coefficient of viscosity - Poiseuille's formula - comparison of
	viscosities – burette method,
	Surface tension: definition – molecular theory – droplets formation–
	shape, size and lifetime – COVID transmission through droplets, saliva
	 drop weight method – interfacial surface tension.
	HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule-
	Thomson porous plug experiment – theory – temperature of inversion
	- liquefaction of Oxygen- Linde's process of liquefaction of air- liquid
UNIT-III	Oxygen for medical purpose- importance of cryocoolers-
CIVIT-III	thermodynamic system - thermodynamic equilibrium - laws of
	thermodynamics – heat engine – Carnot's cycle – efficiency – entropy
	 change of entropy in reversible and irreversible process.
	ELECTRICITY AND MAGNETISM: potentiometer – principle –
	measurement of thermo emf using potentiometer -magnetic field due
	to a current carrying conductor – Biot-Savart's law – field along the
UNIT-IV	axis of the coil carrying current – peak, average and RMS values of ac
	current and voltage – power factor and current values in an AC circuit
	- types of switches in household and factories- Smart wifi switches-
	fuses and circuit breakers in houses
	DIGITAL ELECTRONICS AND DIGITAL INDIA: logic gates,
	OR, AND, NOT, NAND, NOR, EXOR logic gates – universal
UNIT-V	building blocks – Boolean algebra – De Morgan's theorem –
UIVII V	verification – overview of Government initiatives: software
	technological parks under MeitY, NIELIT- semiconductor laboratories
	under Dept. of Space – an introduction to Digital India

	PROFESSIONAL COMPONENTS: expert lectures – seminars —				
UNIT-VI	webinars – industry inputs – social accountability – patriotism				
	1. R.Murugesan (2001), AlliedPhysics,S. ChandandCo,NewDelhi.				
	2. BrijlalandN.Subramanyam (1994),				
	WavesandOscillations, VikasPublishingHouse, NewDelhi.				
	3. BrijlalandN.Subramaniam (1994),				
	Properties of Matter, S. Chandand Co., New Delhi.				
TEXT BOOKS	4. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics				
ILMI BOOKS	(8 th edition), S.ChandandCo.,New Delhi.				
	5. R.Murugesan(2005),				
	OpticsandSpectroscopy,S.ChandandCo,NewDelhi.				
	6. A.Subramaniyam,				
	AppliedElectronics2 nd Edn.,NationalPublishingCo.,Chennai.				
	1. ResnickHallidayandWalker(2018).FundamentalsofPhysics(11 th e				
	dition), John Willeyand Sons, Asia Pvt. Ltd., Singapore.				
	2. V.R.KhannaandR.S.Bedi (1998), TextbookofSound1 st Edn.				
	KedharnaathPublishandCo, Meerut.				
REFERENCE	3. N.S.KhareandS.S.Srivastava (1983),				
BOOKS	ElectricityandMagnetism10 th Edn.,AtmaRamandSons, New				
DOOKS	Delhi.				
	4. D.R.KhannaandH.R. Gulati(1979). Optics,S. Chand				
	andCo.Ltd.,New Delhi.				
	5. V.K.Metha(2004).Principlesofelectronics6 th Edn.				
	S.Chandandcompany.				
	1. https://youtu.be/M_5KYncYNyc				
	2. https://youtu.be/ljJLJgIvaHY				
	3. https://youtu.be/7mGqd9HQ_AU				
	4. https://youtu.be/h5jOAw57OXM				
TYPE	5. https://learningtechnologyofficial.com/category/fluid-				
WEB	mechanics-lab/				
RESOURCES	6. http://hyperphysics.phy-				
	astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/watc				
	h?v=gT8Nth9NWPMhttps://www.youtube.com/watch?v=9mX				
	OMzUruMQandt=1shttps://www.youtube.com/watch?v=m4u-				
	SuaSu1sandt=3shttps://www.biolinscientific.com/blog/what-are-				
	surfactants-and-how-do-they-work				

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

		Explain types of motion and extend their knowledge in the
	CO1	study of variousdynamicmotionsanalyzeand demonstrate
	COI	mathematically. Relate theory with practical applications in
		medical field.
		Explaintheirknowledgeofunderstandingaboutmaterialsandtheir
	CO2	behaviorsandapplyittovarioussituationsinlaboratoryandreal life.
		Connect droplet theory with Corona transmission.
		Comprehend basic concept of thermodynamics concept of
	CO3	entropyand associated theorems able to interpret the process of
COLIDARIO		flowtemperaturephysicsinthebackgroundofgrowthof this
COURSEO		technology.
UTCOMES		Articulate the knowledge about electric current
		resistance, capacitance in terms of potential electric field and
	CO4	electric
		correlatetheconnectionbetweenelectricfieldandmagneticfieldan
		danalyzethemmathematicallyverifycircuitsandapplytheconcepts
		toconstructcircuitsandstudythem.
		Interpret the real life solutions using AND, OR, NOT basiclogicgates and intend their ideas to universal building blocks.
	CO5	InferoperationsusingBooleanalgebraandacquireelementaryidea
	COS	sofICcircuits.Acquire information about various Govt.
		programs/ institutions in this field.
		programs/ modunous in this ficia.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	M	S	S	S	M	S	S	S	S	M
CO3	M	S	S	S	S	M	S	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	M	S	S	S	S	S	S	S	S	S

COURSE	ODD SEMESTER - CORE
COURSETITLE	ALLIED PRACTICAL-I
CREDITS	3
COURSE	Apply various physics concepts to understand Properties of Matter
OBJECTIVES	and waves, set up experimentation to verify theories, quantify and
	analyse, able to do error analysis and correlate results

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method.
- 4. Rigidity modulus by torsional oscillations without mass
- 6. Surface tension and interfacial Surface tension drop weight method
- 7. Comparison of viscosities of two liquids burette method
- 8. Specific heat capacity of a liquid half time correction
- 9. Verification of laws of transverse vibrations using sonometer
- 10. Calibration of low range voltmeter using potentiometer
- 11. Determination of thermo emf using potentiometer
- 12. Verification of truth tables of basic logic gates using ICs
- 13. Verification of De Morgan's theorems using logic gate ICs.
- 14. Use of NAND as universal building block.

Note: Use of digital balance permitted

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS –II
CREDITS	3
COURSE OBJECTIVES	To understand the basic concepts of optics, modern Physics, concepts of relativity and quantumphysics, semiconductorphysics, and electronics.

UNITS	COURSE DETAILS
	OPTICS: interference – interference in thin films –colors of thin
	films – air wedge – determination of diameter of a thin wire by air
	wedge - diffraction - diffraction of light vs sound - normal
UNIT-I	incidence - experimental determination of wavelength using
	diffraction grating (no theory) - polarization - polarization by
	double reflection – Brewster's law – optical activity – application
	in sugar industries
	ATOMIC PHYSICS: atom models – Bohr atom model – mass
	number – atomic number – nucleons – vector atom model – various
	quantum numbers - Pauli's exclusion principle - electronic
UNIT-II	configuration – periodic classification of elements – Bohr
	magneton – Stark effect –Zeeman effect (elementary ideas only) –
	photo electric effect – Einstein's photoelectric equation –
	applications of photoelectric effect: solar cells, solar panels,
	optoelectric devices
	NUCLEAR PHYSICS: nuclear models – liquid drop model –
	magic numbers – shell model – nuclear energy – mass defect –
	binding energy – radioactivity – uses – half life – mean life - radio
	isotopes and uses -controlled and uncontrolled chain reaction -
	nuclear fission - energy released in fission - chain reaction -
UNIT-III	critical reaction – critical size- atom bomb – nuclear reactor –
	breeder reactor - importance of commissioning PFBR in our
	country - heavy water disposal, safety of reactors: seismic and
	floods –introduction to DAE, IAEA – nuclear fusion –
	thermonuclear reactions – differences between fission and fusion.
	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL
	WAVES: frame of reference – postulates of special theory of
	relativity – Galilean transformation equations – Lorentz
UNIT-IV	transformation equations – derivation – length contraction – time
	dilation – twin paradox – mass-energy equivalence –introduction
	on gravitational waves, LIGO, ICTS opportunities at International
	Centre for Theoretical Sciences
UNIT-V	SEMICONDUCTOR PHYSICS: p-n junction diode – forward
	and reverse biasing – characteristic of diode – zener diode –
	characteristic of zener diode – voltage regulator – full wave bridge
	rectifier – construction and working – advantages (no mathematical
	treatment) – USB cell phone charger –introduction to e-vehicles
	and EV charging stations

UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars — webinars – industry inputs – social accountability – patriotism						
TEXT BOOKS	 R.Murugesan (2005), AlliedPhysics,S.ChandandCo,NewDelhi. K.ThangarajandD.Jayaraman(2004), AlliedPhysics,PopularBookDepot,Chennai. BrijlalandN.Subramanyam(2002), TextbookofOptics,S.ChandandCo,NewDelhi. R.Murugesan (2005), ModernPhysics,S.ChandandCo,NewDelhi. A.SubramaniyamAppliedElectronics, 2ndEdn.,NationalPublishingCo.,Chennai. 						
REFERENCE BOOKS	 ResnickHallidayandWalker (2018), FundamentalsofPhysics, 11thEdn.,JohnWilleyandSons, Asia Pvt.Ltd.,Singapore. D.R.KhannaandH.R. Gulati (1979).Optics, S.ChandandCo.Ltd.,New Delhi. A.Beiser (1997), ConceptsofModernPhysics,TataMcGrawHillPublication,NewDelhi. Thomas L. Floyd (2017), Digital Fundamentals, 11thEdn., Universal Book Stall, NewDelhi. V.K.Metha(2004), Principlesofelectronics, 6thEdn., S.ChandandCompany, New Delhi. 						
WEB RESOURCES	 https://www.berkshire.com/learning-center/delta-p-facemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://www.youtube.com/watch?time_continue=318andv=D38BjgUdL5Uandfeature=emb_logo https://www.youtube.com/watch?v=JrRrp5F-Qu4 https://www.validyne.com/blog/leak-test-using-pressure-transducers/ https://www.atoptics.co.uk/atoptics/blsky.htm-https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects 						

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

COURSEO UTCOMES	CO2	Explaintheconceptsofinterferencediffractionusingprinciplesofs uperpositionofwaves and rephrase the concept of polarization based on wave patterns Outline the basic foundation of different atom models and variousexperiments establishing quantum concepts. Relate the importance of of interpreting improving theoretical models based on observation. Appreciate interdisciplinary nature of science and in solar energy related applications.						
	СОЗ	related applications. Summarizethepropertiesofnuclei, nuclearforcesstructureofatomicnucleusandnuclear models. Solveproblems on delayratehalf-lifeand mean-life.Interpret nuclear processes likefission and fusion. Understand the importance of nuclear energy, safety measures carried and get our Govt.agencies like DAE guiding the country in the nuclear field.						
	CO4	Todescribethebasicconceptsofrelativitylikeequivalenceprince, inertialframes and Lorentz transformation. Extend the knowledge on concepts of relativity and vicevers a Relate of the concepts o						
	CO5	Summarize the working of semiconductor devices like junction diode, Zenerdiode, transistors and practical devices we daily use like USB chargers and EV charging stations.						

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	M	S	S	S	M	S	S	S	S	M
CO3	M	S	S	S	S	M	S	S	S	S

CO4	S	S	S	S	S	S	S	M	S	S
CO5	M	S	S	S	S	S	S	S	S	S

COURSE	EVEN SEMESTER - CORE
COURSETITLE	ALLIED PRACTICAL- II
CREDITS	3
COURSE OBJECTIVES	Apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results

Minimum of Eight Experiments from the list:

- 1. Radius of curvature of lens by forming Newton's rings
- 2. Thickness of a wire using air wedge
- 3. Wavelength of mercury lines using spectrometer and grating
- 4. Refractive index of material of the lens by minimum deviation
- 5. Refractive index of liquid using liquid prism
- 6. Determination of AC frequency using sonometer
- 7. Specific resistance of a wire using PO box
- 8. Thermal conductivity of poor conductor using Lee's disc
- 9. Determination of figure of merit table galvanometer
- 10. Determination of Earth's magnetic field using field along the axis of a coil
- 11. Characterisation of Zenerdiode
- 12. Construction of Zerner/IC regulated power supply
- 13. Construction of AND, OR, NOT gates using diodes and transistor
- 14. NOR gate as a universal building block

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	